Matching Items (8)
Filtering by

Clear all filters

151641-Thumbnail Image.png
Description
Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector

Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector has been reevaluated. To evaluate the safety and efficacy of VACV, we study the interactions between VACV and the host innate immune system, especially the type I interferon (IFN) signaling pathways. In this work, we evaluated the role of protein kinase R (PKR) and Adenosine Deaminase Acting on RNA 1(ADAR1), which are induced by IFN, in VACV infection. We found that PKR is necessary but is not sufficient to activate interferon regulatory factor 3 (IRF3) in the induction of type I IFN; and the activation of the stress-activated protein kinase/ c-Jun NH2-terminal kinase is required for the PKR-dependent activation of IRF3 during VACV infection. Even though PKR was found to have an antiviral effect in VACV, ADAR1 was found to have a pro-viral effect by destabilizing double stranded RNA (dsRNA), rescuing VACVΔE3L, VACV deleted of the virulence factor E3L, when provided in trans. With the lessons we learned from VACV and host cells interaction, we have developed and evaluated a safe replication-competent VACV vaccine vector for HIV. Our preliminary results indicate that our VACV vaccine vector can still induce the IFN pathway while maintaining the ability to replicate and to express the HIV antigen efficiently. This suggests that this VACV vector can be used as a safe and efficient vaccine vector for HIV.
ContributorsHuynh, Trung Phuoc (Author) / Jacobs, Bertram L (Thesis advisor) / Hogue, Brenda (Committee member) / Chang, Yung (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2013
151359-Thumbnail Image.png
Description
Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.
ContributorsShen, Luhui (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Miller, Laurence (Committee member) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2012
156116-Thumbnail Image.png
Description
Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However,

Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However, we choose a different path to find frameshift

neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on

frameshift antigens.

In this dissertation, I have summarized and characterized all the potential frameshift

antigens from microsatellite regions in human, dog and mouse. A list of frameshift

antigens was validated by PCR in tumor samples and the mutation rate was calculated for

one candidate – SEC62. I develop a method to screen the antibody response against

frameshift antigens in human and dog cancer patients by using frameshift peptide arrays.

Frameshift antigens selected by positive antibody response in cancer patients or by MHC

predictions show protection in different mouse tumor models. A dog version of the

cancer vaccine based on frameshift antigens was developed and tested in a small safety

trial. The results demonstrate that the vaccine is safe and it can induce strong B and T cell

immune responses. Further, I built the human exon junction frameshift database which

includes all possible frameshift antigens from mis-splicing events in exon junctions, and I

develop a method to find potential frameshift antigens from large cancer

immunosignature dataset with these databases. In addition, I test the idea of ‘early cancer

diagnosis, early treatment’ in a transgenic mouse cancer model. The results show that

ii

early treatment gives significantly better protection than late treatment and the correct

time point for treatment is crucial to give the best clinical benefit. A model for early

treatment is developed with these results.

Frameshift neo-antigens from microsatellite regions and mis-splicing events are

abundant at mRNA level and they are better antigens than neo-antigens from point

mutations in the genomic sequences of cancer patients in terms of high immunogenicity,

low probability to cause autoimmune diseases and low cost to develop a broadly effective

vaccine. This dissertation demonstrates the feasibility of using frameshift antigens for

cancer vaccine development.
ContributorsZhang, Jian (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Stafford, Phillip (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2018
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154702-Thumbnail Image.png
Description
Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines.

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would allow safe and effective immunization at a younger age. I generated two modified MVs with increased expression of the hemagglutinin (H) protein, the most important viral antigen for inducing protective neutralizing immunity, in the background of a current vaccine-equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, expressed and secreted truncated, soluble H protein to its extracellular environment. The alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable resistance to in vitro neutralization. In initial screening in adult mouse models of vaccination, both modified MVs proved more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced protective immunity in the presence of low levels of artificially introduced passive immunity that mimic the passive maternal immunity that currently limits vaccination of young infants, and that strongly inhibited responses to the current vaccine-equivalent. Finally, I developed a more physiological infant-like mouse model for MV vaccine testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent transfer passive immunity to their pups. This model will allow additional preclinical evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in this dissertation I identify a promising candidate, MVvac2-H2, for a next generation measles vaccine.
ContributorsJulik, Emily (Author) / Reyes del Valle, Jorge (Thesis advisor) / Chang, Yung (Committee member) / Blattman, Joseph (Committee member) / Hogue, Brenda (Committee member) / Nickerson, Cheryl (Committee member) / Arizona State University (Publisher)
Created2016
149455-Thumbnail Image.png
Description
Coronaviruses are medically important viruses that cause respiratory and enteric infections in humans and animals. The recent emergence through interspecies transmission of severe acute respiratory syndrome coronavirus (SARS-CoV) strongly supports the need for development of vaccines and antiviral reagents. Understanding the molecular details of virus assembly is an attractive target

Coronaviruses are medically important viruses that cause respiratory and enteric infections in humans and animals. The recent emergence through interspecies transmission of severe acute respiratory syndrome coronavirus (SARS-CoV) strongly supports the need for development of vaccines and antiviral reagents. Understanding the molecular details of virus assembly is an attractive target for development of such therapeutics. Coronavirus membrane (M) proteins constitute the bulk of the viral envelope and play key roles in assembly, through M-M, M-spike (S) and M-nucleocapsid (N) interactions. M proteins have three transmembrane domains, flanked by a short amino-terminal domain and a long carboxy-terminal tail located outside and inside the virions, respectively. Two domains are apparent in the long tail - a conserved region (CD) at the amino end and a hydrophilic, charged carboxy-terminus (HD). We hypothesized that both domains play functionally important roles during assembly. A series of changes were introduced in the domains and the functional impacts were studied in the context of the virus and during virus-like particle (VLP) assembly. Positive charges in the CD gave rise to viruses with neutral residue replacements that exhibited a wild-type phenotype. Expression of the mutant proteins showed that neutral, but not positive, charges formed VLPs and coexpression with N increased output. Alanine substitutions resulted in viruses with crippled phenotypes and proteins that failed to assemble VLPs or to be rescued into the envelope. These viruses had partially compensating changes in M. Changes in the HD identified a cluster of three key positive charges. Viruses could not be recovered with negatively charged amino acid substitutions at two of the positions. While viruses were recovered with a negative charge substitution at one of the positions, these exhibited a severely crippled phenotype. Crippled mutants displayed a reduction in infectivity. Results overall provide new insight into the importance of the M tail in virus assembly. The CD is involved in fundamental M-M interactions required for envelope formation. These interactions appear to be stabilized through interactions with the N protein. Positive charges in the HD also play an important role in assembly of infectious particles.
ContributorsArndt, Ariel L (Author) / Hogue, Brenda G (Thesis advisor) / Jacobs, Bertram (Committee member) / Francisco, Wilson (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2010
149418-Thumbnail Image.png
Description
Host organisms have evolved multiple mechanisms to defend against a viral infection and likewise viruses have evolved multiple methods to subvert the host's anti-viral immune response. Vaccinia virus (VACV) is known to contain numerous proteins involved in blocking the cellular anti-viral immune response. The VACV E3L protein is

Host organisms have evolved multiple mechanisms to defend against a viral infection and likewise viruses have evolved multiple methods to subvert the host's anti-viral immune response. Vaccinia virus (VACV) is known to contain numerous proteins involved in blocking the cellular anti-viral immune response. The VACV E3L protein is important for inhibiting the anti-viral immune response and deletions within this gene lead to a severe attenuation. In particular, VACV containing N-terminal truncations in E3L are attenuated in animal models and fail to replicate in murine JC cells. Monkeypox virus (MPXV) F3L protein is a homologue of the VACV E3L protein, however it is predicted to contain a 37 amino acid N-terminal truncation. Despite containing an N-terminal truncation in the E3L homologue, MPXV is able to inhibit the anti-viral immune response similar to wild-type VACV and able to replicate in JC cells. This suggests that MPXV has evolved another mechanism(s) to counteract host defenses and promote replication in JC cells. MPXV produces less dsRNA than VACV during the course of an infection, which may explain why MPXV posses a phenotype similar to VACV, despite containing a truncated E3L homologue. The development of oncolytic viruses as a therapy for cancer has gained interest in recent years. Oncolytic viruses selectively replicate in and destroy cancerous cells and leave normal cells unharmed. Many tumors possess dysregulated anti-viral signaling pathways, since these pathways can also regulate cell growth. Creating a mutation in the N-terminus of the VACV-E3L protein generates an oncolytic VACV that depends on dysregulated anti-viral signaling pathways for replication allowing for direct targeting of the cancerous cells. VACV-E3Ldel54N selectively replicates in numerous cancer cells lines and not in the normal cell lines. Additionally, VACV-E3Ldel54N is safe and effective in causing tumor regression in a xenograph mouse model. Lastly, VACV-E3Ldel54N was capable of spreading from the treated tumors to the untreated tumors in both a xenograph and syngeneic mouse model. These data suggest that VACV-E3Ldel54N could be an effective oncolytic virus for the treatment of cancer.
ContributorsArndt, William D (Author) / Jacobs, Bertram (Thesis advisor) / Curtiss Iii, Roy (Committee member) / Chang, Yung (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2010
190893-Thumbnail Image.png
Description
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of Coronavirus Disease 2019 (COVID-19). Successful vaccination aims to elicit neutralizing antibodies (NAbs) which inhibit viral infection. Traditional NAb quantification methods (neutralization assays) are labor-intensive and expensive, with limited practicality for routine use (e.g. monitoring vaccination response). Thus, a rapid

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of Coronavirus Disease 2019 (COVID-19). Successful vaccination aims to elicit neutralizing antibodies (NAbs) which inhibit viral infection. Traditional NAb quantification methods (neutralization assays) are labor-intensive and expensive, with limited practicality for routine use (e.g. monitoring vaccination response). Thus, a rapid (10-minute) lateral flow assay (LFA) for quantification of SARS-CoV-2 NAbs was developed. Using the NAb LFA, an 18-month longitudinal study assessing monthly NAb titers was conducted in a cohort of over 500 COVID-19 mRNA vaccine recipients. Three NAb response groups were identified: vaccine strong responders (VSRs), moderate responders (VMRs), and poor responders (VPRs). VSRs generated high and durable NAb titers. VMRs initially generated high NAb titers but showed more rapid waning with time post-vaccination. Finally, VPRs rarely generated NAb titers ≥1:160, even after 3rd dose. Although strong humoral responses correlate with vaccine effectiveness, viral-specific CD4+ and CD8+ T cells are critical for long-term protection. Discordant phenotypes of viral-specific CD8+ and CD4+CXCR5+ T follicular helper (cTfh) cells have recently been associated with differential NAb responses. The second portion of this dissertation was to investigate whether/how SARS-CoV-2 T cell responses differ in individuals with impaired NAb titers following mRNA vaccination. Thus, phenotypic and functional characterization of T cell activation across NAb response groups was conducted. It was hypothesized that VPRs would exhibit discordant SARS-CoV-2 T cell activation and altered cTfh phenotypes. Peripheral blood mononuclear cells were isolated from VPRs, VMRs, VSRs, naturally infected, and normal donors. SARS-CoV-2 responsive T cells were characterized using in vitro activation induced marker assays, multicolor flow cytometry, and multiplex cytokine analysis. Further, CXCR5+ cTfh were examined for chemokine receptor expression (CCR6 and CXCR3). Results demonstrated that despite differential NAb responses, activation of SARS-CoV-2 responsive CD4+ and CD8+ T cells was comparable across NAb groups. However, double-positive CD4+CD8+, CD8low, and activated CD4+CXCR5+CCR6-CXCR3+ (Tfh1-like) T cells were expanded in VPRs compared to VMR and VSRs. Interestingly, a unique population of CD8+CXCR5+ T cells was also expanded in VPRs. These novel findings may aid in identification of individuals with impaired or altered immune responses to COVID-19 mRNA vaccination.
ContributorsRoeder, Alexa Jordan (Author) / Lake, Douglas (Thesis advisor) / McFadden, Grant (Committee member) / Borges Florsheim, Esther (Committee member) / Chang, Yung (Committee member) / Rahman, Masmudur (Committee member) / Arizona State University (Publisher)
Created2023