Matching Items (14)
Filtering by

Clear all filters

136287-Thumbnail Image.png
Description
Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine

Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine has been notoriously difficult to produce. To overcome this, a vaccine using non-structural protein 3 (NS3) as a target to elicit a T cell specific immune response is thought to be a possible strategy for eliciting a protective immune response against hepatitis C infection. In this paper, a recombinant strain of measles virus (MV) that expresses HCV NS3 protein was analyzed. The replication fitness of this recombinant virus also indicates that this construct replicates at a higher rate than parental measles strain. It is also demonstrated through western blot analysis of protein expression and immunofluorescence that this recombinant virus expresses both the inserted HCV NS3 protein, as well as native measles proteins.
ContributorsWoell, Dana Marie (Author) / Reyes del Valle, Jorge (Thesis director) / Nickerson, Cheryl (Committee member) / Julik, Emily (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136321-Thumbnail Image.png
Description
Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in

Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. These commercial assays measure reactivity against the immunodominant N antigen and can have a false negative rates of 20-30%. Centralized testing by clinical labs can delay rapid screening in an outbreak setting. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to five individual MV proteins representing 85% of the measles proteome. Methods: MV genes were subcloned into pANT_cGST vector to generate C-terminal GST fusion proteins. Single MV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured using a sandwich ELISA for GST expression using relative light units (RLUs) as readouts. Single MV antigens were used as bait to determine the IgG-dependent reactivity in 12 serum samples obtained from immunized animals with previously determined neutralization titer (NT) and the correlation between NT and ELISA reactivity was determined. Results: Protein expression of five measles genes of interest, M, N, F, H, and L, was measured. L exhibited the strongest protein expression with an average RLU value of 4.34 x 10^9. All proteins were expressed at least 50% greater than control (2.33 x 10^7 RLU). As expected, reactivity against the N was the highest, followed by reactivity against M, F, H and L. The best correlation with NT titer was reactivity against F (R^2 = 0.62). Conclusion: These data indicate that the expression of single MV genes M, N, F, H, and L are suitable antigens for serologic capture analysis of measles immunity.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis director) / Reyes del Valle, Jorge (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136186-Thumbnail Image.png
Description
Among wild rodent populations, vertical transmission is believed to constitute the primary route of infection for Lymphocytic Choriomeningitis Virus (LCMV), a non-lytic arenavirus with both acute and chronic forms. When carrier mice infected at birth with the acute Armstrong strain reproduce, they generate congenital carrier offspring containing a quasispecies of

Among wild rodent populations, vertical transmission is believed to constitute the primary route of infection for Lymphocytic Choriomeningitis Virus (LCMV), a non-lytic arenavirus with both acute and chronic forms. When carrier mice infected at birth with the acute Armstrong strain reproduce, they generate congenital carrier offspring containing a quasispecies of LCMV that includes Armstrong as well as its chronic Clone-13 variant. This study examined the genetic trends in the vertical transmission of LCMV from mothers infected perinatally with Clone-13. Viral isolates obtained from the serum of congenital carrier offspring were partially sequenced to reveal residue 260 in the glycoprotein-encoding region of their S segment, the site of a major amino acid change differentiating the chronic and acute strains. It was found that the phenylalanine-to-leucine mutation associated with Clone-13 was present in 100% of the isolates, strongly indicating that the offspring of Clone-13 carriers contain exclusively the chronic variant. This research has broad implications for the epidemiology of the virus, and, given the predominance of Armstrong in the wild, suggests that there must be a biological cost associated with Clone-13 infection in non-carriers.
ContributorsFrear, Cody Christian (Author) / Blattman, Joseph (Thesis director) / Hogue, Brenda (Committee member) / Holechek, Susan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136379-Thumbnail Image.png
Description
Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy.

Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy. Beta lactam antibiotics used to be highly effective against S. aureus infections, but resistance mechanisms have rendered methicillin, oxacillin, and other beta lactam antibiotics ineffective against these infections. A promising avenue for MRSA treatment lies in the use of synthetic antibodies—molecules that bind with specificity to a given compound. Synbody 14 is an example of such a synbody, and has been designed with MRSA treatment in mind. Mouse model studies have even associated Syn14 treatment with reduced weight loss and morbidity in MRSA-infected mice. In this experiment, in vitro activity of Syn 14 and oxacillin was assessed. Early experiments measured Syn 14 and oxacillin’s effectiveness in inhibiting colony growth in growth media, mouse serum, and mouse blood. Syn14 and oxacillin had limited efficacy against USA300 strain MRSA, though interestingly it was noted that Syn14 outperformed oxacillin in mouse serum and whole mouse blood, indicating the benefits of its binding properties. A second experiment measured the impact that a mix of oxacillin and Syn 14 had on colony growth, as well as the effect of adding them simultaneously or one after the other. While use of either bactericidal alone did not show a major inhibitory effect on USA300 MRSA colony growth, their use in combination showed major decreases in colony growth. Moreover, it was found that unlike other combination therapies, Syn14 and oxacillin did not require simultaneous addition to MRSA cells to achieve inhibition of cell growth. They merely required that Syn14 be added first. This result suggests Syn14’s possible utility in therapeutic settings, as the time insensitivity of synergy removes a major hurdle to clinical use—the difficulty in ensuring that two drugs reach an affected area at the same time. Syn14 remains a promising antimicrobial agent, and further study should focus on its precise mechanism of action and suitability in clinical treatment of MRSA infections.
ContributorsMichael, Alexander (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136871-Thumbnail Image.png
Description
Viral infections are a significant cause of disease in humans. While some viral diseases have been eliminated, many more continue to infect millions. Viral infections are challenging to treat because viruses use host cell machinery to replicate, so it is difficult to develop drugs that can target viruses. Normally, the

Viral infections are a significant cause of disease in humans. While some viral diseases have been eliminated, many more continue to infect millions. Viral infections are challenging to treat because viruses use host cell machinery to replicate, so it is difficult to develop drugs that can target viruses. Normally, the host’s immune system is capable of destroying the virus, but during chronic infections it becomes exhausted and T cells lose their effector functions necessary for the clearance of the virus. IL-2 can help relieve this exhaustion, but causes toxicity to the body. In mice infected with chronic LCMV, IL-2 administration causes death due to pulmonary hemorrhage. CD4 deficient mice were infected with chronic LCMV and then dosed with IL-2 and survived, but mice that were deficient for CD8 T cells died, indicating that toxicity was mediated by CD8 T cells. CD8 T cells can kill infected host cells directly by producing perforin, or can produce cytokines like IFN-γ and TNF to further activate the immune system and mediate killing. Mice that were deficient in perforin died after IL-2 administration, as well as mice that were deficient in IFN-γ. Mice deficient in TNF, however, survived, indicating that TNF was mediating the toxicity in response to IL-2. There are two different receptors for TNF, p55 and p75. p55 is known as TNFR1 and has been implicated in apoptosis of virally infected cells. P75 is known as TNFR2 and is associated more with inflammation in response to infection. My hypothesis was that if TNFR2 was knocked out, infected mice would survive IL-2 dosing. When single knockouts of TNFR1 and 2 were used in an experiment however, it was found that either receptor is capable of mediating toxicity, as both experimental groups failed to survive. This is relevant to current IL-2 therapies because there is no way to eliminate a single receptor in order to reduce toxicity. Further studies exploring the anti-viral capabilities of IFN-γ are suggested.
ContributorsJarvis, Jordan Alisa (Author) / Blattman, Joseph (Thesis director) / Denzler, Karen (Committee member) / McAfee, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134414-Thumbnail Image.png
Description
Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α,

Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α, shutting down protein synthesis and halting the viral life cycle. To combat host defenses, vaccinia virus encodes E3, a potent inhibitor of the cellular anti-viral eIF2α kinase, PKR. The E3 protein contains a C-terminal dsRNA-binding motif that sequesters dsRNA and inhibits PKR activation. We demonstrate that E3 also interacts with PKR by co-immunoprecipitation. This interaction is independent of the presence of dsRNA and dsRNA-binding by E3, indicating that the interaction is not due to dsRNA-bridging.
PKR interaction mapped to a region within the dsRNA-binding domain of E3 and overlapped with sequences in the C-terminus of this domain that are necessary for binding to dsRNA. Point mutants of E3 were generated and screened for PKR inhibition and direct interaction. Analysis of these mutants demonstrates that dsRNA-binding but not PKR interaction plays a critical role in the broad host range of VACV. Nonetheless, full inhibition of PKR in cells in culture requires both dsRNA-binding and PKR interaction. Because E3 is highly conserved among orthopoxviruses, understanding the mechanisms that E3 uses to inhibit PKR can give insight into host range pathogenesis of dsRNA producing viruses.
ContributorsFoster, Clayton (Co-author) / Alattar, Hamed (Co-author) / Jacobs, Bertram (Thesis director) / Blattman, Joseph (Committee member) / McFadden, Grant (Committee member) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154702-Thumbnail Image.png
Description
Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines.

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would allow safe and effective immunization at a younger age. I generated two modified MVs with increased expression of the hemagglutinin (H) protein, the most important viral antigen for inducing protective neutralizing immunity, in the background of a current vaccine-equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, expressed and secreted truncated, soluble H protein to its extracellular environment. The alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable resistance to in vitro neutralization. In initial screening in adult mouse models of vaccination, both modified MVs proved more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced protective immunity in the presence of low levels of artificially introduced passive immunity that mimic the passive maternal immunity that currently limits vaccination of young infants, and that strongly inhibited responses to the current vaccine-equivalent. Finally, I developed a more physiological infant-like mouse model for MV vaccine testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent transfer passive immunity to their pups. This model will allow additional preclinical evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in this dissertation I identify a promising candidate, MVvac2-H2, for a next generation measles vaccine.
ContributorsJulik, Emily (Author) / Reyes del Valle, Jorge (Thesis advisor) / Chang, Yung (Committee member) / Blattman, Joseph (Committee member) / Hogue, Brenda (Committee member) / Nickerson, Cheryl (Committee member) / Arizona State University (Publisher)
Created2016
154884-Thumbnail Image.png
Description
Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions.

Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions. Current diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. Commercially available Diamedix Immunosimplicity® Measles IgG test kit has been shown to have 91.1% sensitivity and 93.8% specificity, with a positive predictive value of 88.7% and a negative predictive value of 90.9% on the basis of a PRN titer of 120. There is an increasing need for rapid screening for measles specific immunity in outbreak settings. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to three individual measles virus (MeV) proteins.

Measles virus (MeV) genes were subcloned into the pJFT7_nGST vector to generate N- terminal GST fusion proteins. Single MeV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured with mouse anti-GST mAb and sheep anti-mouse IgG. Relative light units (RLUs) as luminescence was measured. Antibodies to MeV antigens were measured in 40 serum samples from healthy subjects.

Protein expression of three MeV genes of interest was measured in comparison with vector control and statistical significance was determined using the Student’s t-test (p<0.05). N expressed at the highest level with an average RLU value of 3.01 x 109 (p<0.001) and all proteins were expressed at least 50% greater than vector control (4.56 x 106 RLU). 36/40 serum samples had IgG to N (Ag:GST ratio>1.21), F (Ag:GST ratio>1.92), or H (Ag:GST ratio> 1.23).

These data indicate that the in vitro expression of MeV antigens, N, F, and H, were markedly improved by subcloning into pJFT7_nGST vector to generate N-terminal GST fusion proteins. The expression of single MeV genes N, F and H, are suitable antigens for serologic capture analysis of measles-specific antibodies. These preliminary data can be used to design a more intensive study to explore the possibilities of using these MeV antigens as a diagnostic marker.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2016
155004-Thumbnail Image.png
Description
The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which

The interaction between a virus and its host is a constant competition for supremacy. Both the virus and the host immune system constantly evolve mechanisms to circumvent one another. Vaccinia virus (VACV) infections are a prime example of this. VACV contains a highly conserved innate immune evasion gene, E3L, which encodes the E3 protein composed of a Z-NA-binding domain (Z-NA BD) in the N terminus and a highly characterized dsRNA binding domain in the C-terminus. Both domains of E3 have been found to be essential for the inhibition of antiviral states initiated by host type 1 IFNs. However, the mechanism by which the Z-NA-BD of E3’s N-terminus confers IFN resistance has yet to be established. This is partially due to conflicting evidence showing that the Z-NA-BD is dispensable in most cell culture systems, yet essential for pathogenicity in mice. Recently it has been demonstrated that programmed necrosis is an alternative form of cell death that can be initiated by viral infections as part of the host’s innate immune response to control infection. The work presented here reveals that VACV has developed a mechanism to inhibit programmed necrosis. This inhibition occurs through utilizing E3’s N-terminus to prevent the initiation of programmed necrosis involving the host-encoded cellular proteins RIP3 and Z-NA-binding protein DAI. The inhibition of programmed necrosis has been shown to involve regions of both the viral and host proteins responsible for Z-NA binding through in vivo studies demonstrating that deletions of the Z-NA-BD in E3 correspond to an attenuation of pathogenicity in wild type mice that is restored in RIP3- and DAI-deficient models. Together these findings provide novel insight into the elusive function of the Z-NA-binding domain of the N-terminus and its role in preventing host recognition of viral infections. Furthermore, it is demonstrated that a unique mechanism for resisting virally induced programmed necrosis exists. This mechanism, specific to Z-NA binding, involves the inhibition of a DAI dependent form of programmed necrosis possibly by preventing host recognition of viral infections, and hints at the possible biological role of Z-NA in regulating viral infections.
ContributorsHarrington, Heather (Author) / Jacobs, Bertram L (Thesis advisor) / Langland, Jeffery O (Committee member) / Blattman, Joseph (Committee member) / Haydel, Shelly (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016