Matching Items (17)
Filtering by

Clear all filters

137267-Thumbnail Image.png
Description
It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that

It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that come from the father, introduces more targets that can be manipulated to produce specific reproductive effects. Use of Drosophila melanogaster as a model to study reproduction has increased, in part, due to the use of the GAL4 system. In this system, the GAL4 gene encodes an 881 amino acid protein that binds to the 4-site Upstream Activating Sequence (UAS) to induce transcription of the gene of interest. These sequences constitute the two components of the system: the driver (GAL4) and the responder (gene of interest) \u2014 each of which is maintained as a separate parental line. Effects of the GAL4 driver line "driving" transcription of the responder can be assessed by examining the offspring. One of the more common uses of the GAL4 system involves analyzing phenotypic effects of reducing or eliminating expression of a target gene through the induction of RNAi transcription, which often results in toxicity, lethality, or reduced viability. Utilizing these principles, we strove to demonstrate the effect of knocking down the expression of testis-specific sperm-leucyl-aminopeptidases gene CG13340 on progeny by inducing expression of RNAi with two distinct GAL4 driver lines - one with a nonspecific actin-binding activation sequence and the other with a testis-specific activation sequence. Comparison of both GAL4 driver lines to crosses using N01 wild type ("wt") flies verify that inducing RNAi transcription using the GAL4 system results in reduction of proper offspring development. Further studies using D. melanogaster and the GAL4 system can improve knowledge of factors contributing to male fertility and also be applied to better understand mammalian, specifically human, fertility.
ContributorsEvans, Donna Marie (Author) / Karr, Timothy L. (Thesis director) / Roland, Kenneth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2014-05
134659-Thumbnail Image.png
Description
Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016,

Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016, which provides the research basis of this thesis, suggests that the coiled-coil domain of yGle1 is best crystallized in dicationic aqueous conditions of pH ~8.0 and 10\u201420% PEG 8000. Further exploration of crystallizable microconditions revealed a favorability toward lower pH and lower PEG concentration. Following the discovery of the protein's native crystallography conditions, a comprehensive meta-analysis of scientific literature on Gle1 was conducted on the association of Gle1 mutations with neuron disease.
ContributorsGaetano, Philip Pasquale (Author) / Foy, Joseph (Thesis director) / Dawson, T. Renee (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.

ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
Description
Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.
ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
Description
Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.
ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
Description

A mutation rate refers to the frequency at which DNA mutations occur in an organism over time. In organisms, mutations are the ultimate source of genetic variation on which selection may act. However, a large number of mutations over time can be detrimental to the cell. Mutation rates are the

A mutation rate refers to the frequency at which DNA mutations occur in an organism over time. In organisms, mutations are the ultimate source of genetic variation on which selection may act. However, a large number of mutations over time can be detrimental to the cell. Mutation rates are the frequency at which these new mutations arise over time. This can give great insight into DNA repair mechanisms abilities as well as the mutagenic abilities of selected factors. CRISPR-Cas9 is a powerful tool for genome editing, but its off-target effects are not yet fully understood and studied. With its increasing implementation in science and medicine, it is crucial to understand the mutagenic potential of the tool. S. cerevisiae is a model organism for studying genetics due to its fast growth rate and eukaryotic nature. By integrating CRISPR-Cas9 systems into S. cerevisiae, the mutational burden of the technology can be measured and quantified using fluctuation assays. In this experiment, a fluctuation assay using canavanine selective plates was conducted to determine the mutational burden of CRISPR-Cas9 in S. cerevisiae. Multiple trials revealed that various strains of CRISPR-Cas9 had a mutation rate up to 3-fold higher than that of wild-type S. cerevisiae. This information is essential in improving the precision and safety of CRISPR-Cas9 editing in various applications, including gene therapy and biotechnology.

ContributorsBrown, Adalyn (Author) / Lyncg, Michael (Thesis director) / Geiler-Samerotte, Kerry (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The transcriptome of an organism is a collection of the various messenger RNAs that the genes of an organism produce. As the level of gene expression is different between different tissues of an organism, understanding the transcriptome serves as a way to better understand the differences between the functions and

The transcriptome of an organism is a collection of the various messenger RNAs that the genes of an organism produce. As the level of gene expression is different between different tissues of an organism, understanding the transcriptome serves as a way to better understand the differences between the functions and abilities of tissues and cells in an organism. This understanding of the transcriptome can aid further research in targeted disease treatments and indentifying new biomarkers. This study aims to gather the transcriptome from various tissues of the organism Daphnia pulex. This will be done by using a combination of single cell RNA sequencing (scRNA-seq), which involves the isolation and sequencing of single cells, and single nuclei RNA sequencing (snRNA-seq), which involves the isolation and sequencing of single nuclei. Here we show the viability of isolating single cells and single nuclei from various Daphnia pulex tissues using different techniques and enzymes including trypLE, trypsin EDTA, accutase, etc by using microscopy and automatic cell counting. The results show that each tissue is best isolated using different techniques.

ContributorsShahriari, Ryan (Author) / Lynch, Michael (Thesis director) / Ye, Zhiqiang (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

The purpose of the project is to create a survey that will be sent out to thousands of members of the Global Alliance for Genomics and Health (GA4GH) to update GA4GH's Catalogue of Genomic Data Initiatives online. GA4GH's Catalogue of Genomic Data Initiatives has not been updated in several years,

The purpose of the project is to create a survey that will be sent out to thousands of members of the Global Alliance for Genomics and Health (GA4GH) to update GA4GH's Catalogue of Genomic Data Initiatives online. GA4GH's Catalogue of Genomic Data Initiatives has not been updated in several years, leading to outdated and incorrect information. The survey will be used to gather information from genetic groups worldwide to update and increase the amount of data in the Catalogue on the GA4GH website. The questions were created in collaboration with GA4GH and the Human Pangenome Reference Consortium (HPRC). The actual survey was designed on Qualtrics.

ContributorsKapadia, Venus (Author) / Cook-Deegan, Robert (Thesis director) / Tsosie, Krystal (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsKapadia, Venus (Author) / Cook-Deegan, Robert (Thesis director) / Tsosie, Krystal (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2023-05