Matching Items (11)
Filtering by

Clear all filters

147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136445-Thumbnail Image.png
Description
Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression

Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression of downstream genes that are essential to neuropsychiatric function. An IEG, early growth response 3 (EGR3) has been identified as a main gene involved in a network of transcription factors implicated in schizophrenia susceptibility. The serotonin 2A receptor (5-HT2AR) seems to play an important role in schizophrenia and the dysfunction of the 5-HT2AR encoding gene, HTR2A, within the prefrontal cortex (PFC) contributes to multiple psychiatric illnesses including schizophrenia. EGR3's role as a transcription factor that is activated by environmental stimuli suggests it may regulate Htr2a transcription in response to physiological stress, thus affecting 5-HT2AR function in the prefrontal cortex (PFC). The aim of this study was to examine the relationship between Egr3 activation and Htr2a expression after an environmental stimulus. Sleep deprivation is an acute physiological stressor that activates Egr3. Therefore to examine the relationship between Egr3 and Htr2a expression after an acute stress, wild type and Egr3 knockout mice that express EGFP under the control of the Htr2a promoter were sleep deprived for 8 hours. We used immunohistochemistry to determine the location and density of Htr2a-EGFP expression after sleep deprivation and found that Htr2a-EGFP expression was not affected by sex or subregions of the PFC. Additionally, Htr2a-EGFP expression was not affected by the loss of Egr3 or sleep deprivation within the PFC. The LPFC subregions, layers V and VI showed significantly more Htr2a-EGFP expression than layers I-III in all animals for both sleep deprivation and control conditions. Possible explanations for the lack of significant effects in this study may be the limited sample size or possible biological abnormalities in the Htr2a-EGFP mice. Nonetheless, we did successfully visualize the anatomical distribution of Htr2a in the prefrontal cortex via immunohistochemical staining. This study and future studies will provide insight into how Egr3 activation affects Htr2a expression in the PFC and how physiological stress from the environment can alter candidate schizophrenia gene function.
ContributorsSabatino, Alissa Marie (Author) / Gallitano, Amelia (Thesis director) / Hruschka, Daniel (Thesis director) / Maple, Amanda (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
131422-Thumbnail Image.png
Description
In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the

In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the local environment to establish territories, while females search for suitable mates (Greenwood (1980)). However, the variables shaping dispersal decisions appear more complex (Mabry et al. (2013), Végvári et al. (2018)). There are a number of different variables that could act as a driving force behind dispersal including the social mating system, food competition, inbreeding avoidance, predation, and others. Here, we investigate whether females are the dispersing sex in great-tailed grackles, which have a mating system where the males hold territories and the females choose which territory to place their nest in (Johnson et al. (2000)). We used genetic approaches to identify sex biases in the propensity to disperse. In the experiment, we found that the male grackles were less related to each other while the female grackles were more related to each other. Building on that, the average distance between closely related individuals of the male group was longer than the average distance of closely related females. But, the mantel correlograms for the males and females both lack a consistent trend. Overall, the results indicated suggest that the males are the dispersing sex while the females are potentially philopatric and that the average dispersal distance for the grackle is greater than 2000 meters, the size of the sampling range used in the experiment. These results will inform our long-term study on the relationship between behavioral flexibility and rapid geographic range expansion by elucidating which individuals are likely to experience similar conditions across their lives, and which are likely to face new conditions when they become breeders.
ContributorsSevchik, August L (Author) / Langergraber, Kevin (Thesis director) / Logan, Corina (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131150-Thumbnail Image.png
Description
Immediate early genes (IEGs) are rapidly activated in response to an environmental stimulus, and most code for transcription factors that mediate processes of synaptic plasticity, learning, and memory. EGR3, an immediate early gene transcription factor, is a mediator of biological processes that are disrupted in patients with schizophrenia (SCZ). A

Immediate early genes (IEGs) are rapidly activated in response to an environmental stimulus, and most code for transcription factors that mediate processes of synaptic plasticity, learning, and memory. EGR3, an immediate early gene transcription factor, is a mediator of biological processes that are disrupted in patients with schizophrenia (SCZ). A microarray experiment conducted by our lab revealed that Egr3 also regulates genes involved in DNA damage response. A recent study revealed that physiological neuronal activity results in the formation of DNA double-stranded breaks (DSBs) in the promoters of IEGs. Additionally, they showed that these DSBs are essential for inducing the expression of IEGs, and failure to repair these DSBs results in the persistent expression of IEGs. We hypothesize that Egr3 plays a role in repairing activity- induced DNA DSBs, and mice lacking Egr3 should have an abnormal accumulation of these DSBs. Before proceeding with that experiment, we conducted a preliminary investigation to determine if electroconvulsive stimulation (ECS) is a reliable method of inducing activity- dependent DNA damage, and to measure this DNA damage in three subregions of the hippocampus: CA1, CA3, and dentate gyrus (DG). We asked the question, are levels of DNA DSBs different between these hippocampal subregions in animals at baseline and following electroconvulsive stimulation (ECS)? To answer this question, we quantified γ-H2AX, a biomarker of DNA DSBs, in the hippocampal subregions of wildtype mice. Due to technical errors and small sample size, we were unable to substantiate our preliminary findings. Despite these shortcomings, our experimental design can be modified in future studies that investigate the role of Egr3 in activity-induced DNA damage repair.
ContributorsKhoshaba, Rami Samuel (Author) / Newbern, Jason (Thesis director) / Gallitano, Amelia (Committee member) / Marballi, Ketan (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131228-Thumbnail Image.png
Description
Damage to DNA can affect the genes it encodes; if this damage is not repaired, abnormal proteins may be produced and cellular functions may be disturbed. DNA damage has been implicated in the initiation and progression of a variety of diseases. Conversely, DNA damage has also been discovered to contribute

Damage to DNA can affect the genes it encodes; if this damage is not repaired, abnormal proteins may be produced and cellular functions may be disturbed. DNA damage has been implicated in the initiation and progression of a variety of diseases. Conversely, DNA damage has also been discovered to contribute to beneficial biological processes. Madabhushi and colleagues (2015) determined that activity-dependent DNA double strand breaks (DSBs) in the promoter region of immediate early genes (IEGs) induced their expression. EGR3 is an IEG transcription factor which regulates the expression of growth factors and synaptic plasticity-associated genes. In a previously conducted microarray experiment, it was revealed that EGR3 regulates the expression of genes associated with DNA repair such as Cenpa and Nr4a2. These findings inspired us to investigate if EGR3 affects DNA repair in vivo. Before conducting this experiment, we sought to standardize and optimize a method of inducing DNA damage in the hippocampus. Electroconvulsive stimulation (ECS) is utilized to induce neuronal activity. Since neuronal activity leads to the formation of DNA DSBs, we theorized that ECS could be used to induce DNA DSBs in the hippocampus. We predicted that mice that receive ECS would have more DNA DSBs than those that receive the sham treatment. Gamma H2AX, a biomarker for DNA damage, was utilized to quantify DNA DSBs. Gamma H2AX expression in the dentate gyrus, CA1 and CA3 regions of the hippocampus was compared between mice that received the sham treatment and mice that received ECS. Mice that received ECS were sacrificed either 1 or 2 hours post-administration, constituting treatment conditions of 1 hr post-ECS and 2 hrs post-ECS. Our results suggest that ECS has a statistically significant effect exclusively in the CA1 region of the hippocampus. However, our analyses may have been limited due to sample size. A power analysis was conducted, and the results suggest that a sample size of n=4 mice will be sufficient to detect significant differences across treatments in all three regions of the hippocampus. Ultimately, future studies with an increased sample size will need to be conducted to conclusively assess the use of ECS to induce DNA damage within the hippocampus.
ContributorsAden, Aisha Abubakar (Author) / Newbern, Jason (Thesis director) / Gallitano, Amelia (Thesis director) / Marballi, Ketan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132599-Thumbnail Image.png
Description
When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented

When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented in this paper reports and characterizes these faster growing colonies (revertants) in an attempt to dissect the mechanism by which they overcome the TonB deficiency. Genomic analysis revealed mutations in yejM, a putative inner-to-outer membrane cardiolipin transporter, which are responsible for the faster growth phenotype in a tonB mutant background. Further characterization of the revertants revealed that they display hypersensitivity to vancomycin, a large antibiotic that is normally precluded from entering E. coli cells, and leaked periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. In the absence of wild type tonB, however, the deletion of all known of cardiolipin synthase genes (clsABC) did not produce the phenotype similar to mutations in the yejM gene, suggesting the absence of cardiolipin from the outer membrane per se is not responsible for the increased outer membrane permeability. These data show that a defect in lipid biogenesis and transport can compromise outer membrane permeability barrier to allow siderophore intake and that YejM may have additional roles other than transporting cardiolipin.
ContributorsQiu, Nan (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Yu, Julian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133577-Thumbnail Image.png
Description
Egr3 is an immediate early gene transcription factor that shows genetic association with schizophrenia, and is found in decreased levels in the brains of schizophrenia patients. Schizophrenia patients also exhibit cognitive and memory deficits, both of which Egr3 has been shown to play a crucial role in. Additionally, high levels

Egr3 is an immediate early gene transcription factor that shows genetic association with schizophrenia, and is found in decreased levels in the brains of schizophrenia patients. Schizophrenia patients also exhibit cognitive and memory deficits, both of which Egr3 has been shown to play a crucial role in. Additionally, high levels of DNA damage are found in the brains of schizophrenia patients. A recent study has shown that DNA damage occurs as a result of normal physiological activity in neurons and is required for induction of gene expression of a subset of early response genes. Also, failure to repair this damage can lead to gene expression in a constitutive switched on state. Egr3 knockout (Egr3-/-) mice show deficits in hippocampal synaptic plasticity and memory. We were interested in characterizing downstream targets of EGR3 in the hippocampus. To determine these targets, electroconvulsive seizure (ECS) was carried out in Egr3 -/- versus wild type (WT) mice, and a microarray study was first done in our lab. ECS maximally stimulates Egr3 expression and we hypothesized that there would be gene targets that are differentially expressed between Egr3 -/- and WT mice that had been subjected to ECS. Two separate analyses of the microarray yielded 65 common genes that were determined as being differentially expressed between WT and Egr3 -/- mice after ECS. Further Ingenuity Pathway Analysis of these 65 genes indicated the Gadd45 signaling pathway to be the top canonical pathway, with the top four pathways all being associated with DNA damage or DNA repair. A literature survey was conducted for these 65 genes and their associated pathways, and 12 of the 65 genes were found to be involved in DNA damage response and/or DNA repair. Validation of differential expression was then conducted for each of the 12 genes, in both the original male cohort used for microarray studies and an additional female cohort of mice. 7 of these genes validated through quantitative real time PCR (qRT-PCR) in the original male cohort used for the microarray study, and 4 validated in both the original male cohort and an independent female cohort. Bioinformatics analysis yielded predicted EGR3 binding sites in promoters of these 12 genes, validating their role as potential transcription targets of EGR3. These data reveal EGR3 to be a novel regulator of DNA repair. Further studies will be needed to characterize the role of Egr3 in repairing DNA damage.
ContributorsBarkatullah, Arhem Fatima (Author) / Newbern, Jason (Thesis director) / Gallitano, Amelia (Committee member) / Marballi, Ketan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134659-Thumbnail Image.png
Description
Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016,

Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016, which provides the research basis of this thesis, suggests that the coiled-coil domain of yGle1 is best crystallized in dicationic aqueous conditions of pH ~8.0 and 10\u201420% PEG 8000. Further exploration of crystallizable microconditions revealed a favorability toward lower pH and lower PEG concentration. Following the discovery of the protein's native crystallography conditions, a comprehensive meta-analysis of scientific literature on Gle1 was conducted on the association of Gle1 mutations with neuron disease.
ContributorsGaetano, Philip Pasquale (Author) / Foy, Joseph (Thesis director) / Dawson, T. Renee (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

The transcriptome of an organism is a collection of the various messenger RNAs that the genes of an organism produce. As the level of gene expression is different between different tissues of an organism, understanding the transcriptome serves as a way to better understand the differences between the functions and

The transcriptome of an organism is a collection of the various messenger RNAs that the genes of an organism produce. As the level of gene expression is different between different tissues of an organism, understanding the transcriptome serves as a way to better understand the differences between the functions and abilities of tissues and cells in an organism. This understanding of the transcriptome can aid further research in targeted disease treatments and indentifying new biomarkers. This study aims to gather the transcriptome from various tissues of the organism Daphnia pulex. This will be done by using a combination of single cell RNA sequencing (scRNA-seq), which involves the isolation and sequencing of single cells, and single nuclei RNA sequencing (snRNA-seq), which involves the isolation and sequencing of single nuclei. Here we show the viability of isolating single cells and single nuclei from various Daphnia pulex tissues using different techniques and enzymes including trypLE, trypsin EDTA, accutase, etc by using microscopy and automatic cell counting. The results show that each tissue is best isolated using different techniques.

ContributorsShahriari, Ryan (Author) / Lynch, Michael (Thesis director) / Ye, Zhiqiang (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

This thesis summarizes the process of writing a children's book about achondroplasia directed at children without genetic disorders. The thesis also includes the children's book The Genetics of Little People that was created during the project.

ContributorsBinsfeld, Allison (Author) / Watkins, Payton (Co-author) / Wilson, Melissa (Thesis director) / Hunt Brendish, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05