Matching Items (7)
Filtering by

Clear all filters

136182-Thumbnail Image.png
Description
The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic

The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic code. They aim to solve these genetic mysteries using whole exome sequencing, a method that prioritizes the protein-coding portion of the genome in the search for disease-causing variants. Unfortunately, a communication gap sometimes exists between the TGen scientists and the patients they serve. I have seen, first hand, the kind of confusion that this study elicits in the families of its participants. Therefore, for my thesis, I decided to create a booklet that is meant to provide some clarity as to what exactly The Dorrance Center for Rare Childhood Disorders does to help diagnose children with rare disorders. The purpose of the booklet is to dispel any confusion regarding the study by providing a general review of genetics and an application of these lessons to the relevant sequencing technology as well as a discussion of the causes and effects of genetic mutations that often times are linked to rare childhood disorders.
ContributorsCambron, Julia Claire (Author) / LaBelle, Jeffrey (Thesis director) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136966-Thumbnail Image.png
Description
The purpose of this thesis is to examine the current atmosphere of genetic patent law and use economic theory to construct models which describe the consequences of the legal code. I intend to analyze the four specific cases of Diamond v. Chakrabarty, Association for Molecular Pathology v. Myriad Genetics, the

The purpose of this thesis is to examine the current atmosphere of genetic patent law and use economic theory to construct models which describe the consequences of the legal code. I intend to analyze the four specific cases of Diamond v. Chakrabarty, Association for Molecular Pathology v. Myriad Genetics, the Alzheimer's Institute of America v. Jackson Laboratory, and the harm caused by PGx Health's monopoly over the LQTS gene.
ContributorsVolz, Caleb Richard (Author) / DeSerpa, Allan (Thesis director) / Silverman, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
137271-Thumbnail Image.png
Description
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating illness that causes the degeneration of both upper and lower motor neurons, leading to eventual muscle atrophy. ALS rapidly progresses into paralysis, with patients typically dying due to respiratory complications within three to five years from the

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating illness that causes the degeneration of both upper and lower motor neurons, leading to eventual muscle atrophy. ALS rapidly progresses into paralysis, with patients typically dying due to respiratory complications within three to five years from the onset of their symptoms. Even after many years of research and drug trials, there is still no cure, and current therapies only succeed in increasing life-span by approximately three months. With such limited options available for patients, there is a pressing need to not only find a cure, but also make new treatments available in order to ameliorate disease symptoms. In a genome-wide association study previously conducted by the Translational Genomics Research Institute (TGen), several single-nucleotide polymorphisms (SNPs) upstream of a novel gene, FLJ10968, were found to significantly alter risk for ALS. This novel gene acquired the name FGGY after publication of the paper. FGGY exhibits altered levels of protein expression throughout ALS disease progression in human subjects, and detectable protein and mRNA expression changes in a mouse model of ALS. We performed co-immunoprecipitation experiments coupled with mass spectrometry in order to determine which proteins are associated with FGGY. Some of these potential binding partners have been linked to RNA regulation, including regulators of the splicesomal complex such as SMN, Gemin, and hnRNP C. To further validate these findings, we have verified co-localization of these proteins with one another. We hypothesize that FGGY plays an important role in ALS pathogenesis, and we will continue to examine its biological function.
ContributorsTerzic, Barbara (Author) / Jensen, Kendall (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
131422-Thumbnail Image.png
Description
In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the

In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the local environment to establish territories, while females search for suitable mates (Greenwood (1980)). However, the variables shaping dispersal decisions appear more complex (Mabry et al. (2013), Végvári et al. (2018)). There are a number of different variables that could act as a driving force behind dispersal including the social mating system, food competition, inbreeding avoidance, predation, and others. Here, we investigate whether females are the dispersing sex in great-tailed grackles, which have a mating system where the males hold territories and the females choose which territory to place their nest in (Johnson et al. (2000)). We used genetic approaches to identify sex biases in the propensity to disperse. In the experiment, we found that the male grackles were less related to each other while the female grackles were more related to each other. Building on that, the average distance between closely related individuals of the male group was longer than the average distance of closely related females. But, the mantel correlograms for the males and females both lack a consistent trend. Overall, the results indicated suggest that the males are the dispersing sex while the females are potentially philopatric and that the average dispersal distance for the grackle is greater than 2000 meters, the size of the sampling range used in the experiment. These results will inform our long-term study on the relationship between behavioral flexibility and rapid geographic range expansion by elucidating which individuals are likely to experience similar conditions across their lives, and which are likely to face new conditions when they become breeders.
ContributorsSevchik, August L (Author) / Langergraber, Kevin (Thesis director) / Logan, Corina (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134276-Thumbnail Image.png
Description
Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance

Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance and lastly to formulate a personal opinion on the value of genetic testing of athletes. ACTN3, ACE, MSTN, and apoE were the genes selected for analyses.
Results—Two genes, ACTN3 and ACE, showed a significant relationship of genotype to phenotypic traits related to athletic performance. ApoE did not demonstrate a phenotypic association with athletic performance, however it showed a correlation with injury susceptibility leading to traumatic brain injury (TBI). MSTN did not show a phenotypic association with athletic performance.
Conclusion—When considering the multifactorial nature of athletics, each sport must be investigated individually due to the different individual requirements. ACTN3 and ACE are the most widely studied genes, therefore, considerable data on their relevance to athletic performance was easily obtained and supported a relationship between genotype and athletic performance.
ContributorsMinto, Jordan Taylor- Lloyd (Author) / Steele, Kelly (Thesis director) / Penton, C. Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case

The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case focuses on the recent management plan for Chiricahua Leopard Frogs implemented by the Arizona Game and Fish Department. The goal of the plan is to better understand the genetic dynamics of the established Chiricahua Leopard Frog populations to develop a more effective management plan. The second part of the case focuses on the Arizona Game and Fish Department’s management of the Northern Leopard Frog. There was little success with the initial breed and release program of the native species, however a nonnative subspecies of Northern Leopard Frog was able to establish a thriving population. This case study exemplifies the many complications with genetic management plans and the importance of careful assessment of options when deciding on a genetic management plan. Despite the complexity of genetic management plans, it is an important method to consider when discussing the conservation of a species.
ContributorsTurpen, Alexa (Author) / Murphree, Julie (Thesis director) / Collins, James (Thesis director) / Owens, Audrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2024-05
Description
Background: Dyslexia is a neurodevelopmental impacting reading and writing ability present in around 5 to 9 percent of the population. The etiology of the condition is not currently well understood. Purpose: To identify new genes of interest regarding the etiology of dyslexia, describe the interaction of those genes within known gene

Background: Dyslexia is a neurodevelopmental impacting reading and writing ability present in around 5 to 9 percent of the population. The etiology of the condition is not currently well understood. Purpose: To identify new genes of interest regarding the etiology of dyslexia, describe the interaction of those genes within known gene networks, and discuss potential relationships between their expression in the early developing brain and phenotypic outcomes. Method: With informed consent, participants’ phenotypic and exome data were collected. Phenotypic data were collected using assessments measuring reading and spelling ability. Exome data were collected via saliva samples and processed at the UW-CRDR. Exome data were then filtering using Seqr and compared across participant families. Certain genes with identical variations were visually validated using the Integrated Genome Viewer, and then investigated using STRING Network Analysis and the Human Brain Transcriptome. Results: Three genes were identified: BCL6, DNAH1, and DNAH12. Protein-protein interactions were confirmed between DNAH1 and DNAH12 via STRING Network Analysis. BLC6 and DNAH1 experience higher postnatal expression in the cerebellar cortex. DNAH12 experiences higher prenatal expression in the hippocampus. Discussion: The findings appear to be consistent with a heterogenous and polygenic model of dyslexia. The correlation between the participants’ genotypes and phenotypes is not strong enough to draw significant conclusions regarding genotype/phenotype connections. A larger participant sample size and analysis of a large pool of shared genes may reveal a clearer relationship.
ContributorsBanta, Claire (Author) / Peter, Beate (Thesis director) / Liu, Li (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2024-05