Matching Items (5)
Filtering by

Clear all filters

131422-Thumbnail Image.png
Description
In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the

In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the local environment to establish territories, while females search for suitable mates (Greenwood (1980)). However, the variables shaping dispersal decisions appear more complex (Mabry et al. (2013), Végvári et al. (2018)). There are a number of different variables that could act as a driving force behind dispersal including the social mating system, food competition, inbreeding avoidance, predation, and others. Here, we investigate whether females are the dispersing sex in great-tailed grackles, which have a mating system where the males hold territories and the females choose which territory to place their nest in (Johnson et al. (2000)). We used genetic approaches to identify sex biases in the propensity to disperse. In the experiment, we found that the male grackles were less related to each other while the female grackles were more related to each other. Building on that, the average distance between closely related individuals of the male group was longer than the average distance of closely related females. But, the mantel correlograms for the males and females both lack a consistent trend. Overall, the results indicated suggest that the males are the dispersing sex while the females are potentially philopatric and that the average dispersal distance for the grackle is greater than 2000 meters, the size of the sampling range used in the experiment. These results will inform our long-term study on the relationship between behavioral flexibility and rapid geographic range expansion by elucidating which individuals are likely to experience similar conditions across their lives, and which are likely to face new conditions when they become breeders.
ContributorsSevchik, August L (Author) / Langergraber, Kevin (Thesis director) / Logan, Corina (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a

As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a new idea: that genes were equally important in studying somatic diseases as they were to psychological disorders. As important as genetics are to psychology, they are not part of the required courses for the major; I found many of my peers in psychology courses did not have a grasp on genetic fundamentals in the same way biology majors did. This was a disconnect that I also found in my own life outside the classroom. Growing up, my mother consistently reminded me to limit my carbs and watch my sugars. Diabetes was very prevalent in my family and I was also at risk. I was repeatedly reminded of my own genes and the risk I faced in having this biological disorder. However, my friend whose father was an alcoholic did not warn her in the same way. While she did know of her father's history, she was not warned of the potential for her to become an alcoholic. While my behavior was altered due to my mother's warning and my own knowledge of the genetic risk of diabetes, I wondered if other people at genetic risk of psychological disorders also altered their behavior. Through my thesis, I hope to answer if students have the same perceived genetic knowledge of psychological diseases as they do for biological ones. In my experience, it is not as well known that psychological disorders have genetic factors. For example, alcohol is commonly used by college students. Alcohol use disorder is present in 16.2% of college aged students and "40-60% of the variance of risk explained by genetic influences." (DSM V, 2013) Compare this to diabetes that has "several common genetic variants that account for about 10% of the total genetic effects," but is much more openly discussed even though it is less genetically linked. (McVay, 2015)This stems from the stigma/taboo surrounding many psychological disorders. If students do know that psychological disorder are genetically influenced, I expect their knowledge to be skewed or inaccurate. As part of a survey, I hope to see how strong they believe the genetic risk of certain diseases are as well as where they gained this knowledge. I hypothesize that only students with a background in psychology will be able to correctly assign the genetic risk of the four presented diseases. Completing this thesis will require in-depth study of the genetic factors, an understanding of the way each disease is perceived and understood by the general population, and a statistical analysis of the survey responses. If the survey data turns out as I expect where students do not have a strong grasp of diseases that could potentially influence their own health, I hope to find a way to educate students on biological and psychological diseases, their genetic risk, and how to speak openly about them.
ContributorsParasher, Nisha (Author) / Amdam, Gro (Thesis director) / Toft, Carolyn Cavaugh (Committee member) / Ostwald, Madeleine (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134276-Thumbnail Image.png
Description
Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance

Abstract
Purpose—Use a framework of genetic knowledge to investigate the association between the genotypes of various genes with phenotypes, specifically the traits of elite athletes, in order to establish a personal opinion on their relevance to athletic performance.
Methods—Assemble and analyze selected published scientific studies on genotype and athletic performance and lastly to formulate a personal opinion on the value of genetic testing of athletes. ACTN3, ACE, MSTN, and apoE were the genes selected for analyses.
Results—Two genes, ACTN3 and ACE, showed a significant relationship of genotype to phenotypic traits related to athletic performance. ApoE did not demonstrate a phenotypic association with athletic performance, however it showed a correlation with injury susceptibility leading to traumatic brain injury (TBI). MSTN did not show a phenotypic association with athletic performance.
Conclusion—When considering the multifactorial nature of athletics, each sport must be investigated individually due to the different individual requirements. ACTN3 and ACE are the most widely studied genes, therefore, considerable data on their relevance to athletic performance was easily obtained and supported a relationship between genotype and athletic performance.
ContributorsMinto, Jordan Taylor- Lloyd (Author) / Steele, Kelly (Thesis director) / Penton, C. Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case

The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case focuses on the recent management plan for Chiricahua Leopard Frogs implemented by the Arizona Game and Fish Department. The goal of the plan is to better understand the genetic dynamics of the established Chiricahua Leopard Frog populations to develop a more effective management plan. The second part of the case focuses on the Arizona Game and Fish Department’s management of the Northern Leopard Frog. There was little success with the initial breed and release program of the native species, however a nonnative subspecies of Northern Leopard Frog was able to establish a thriving population. This case study exemplifies the many complications with genetic management plans and the importance of careful assessment of options when deciding on a genetic management plan. Despite the complexity of genetic management plans, it is an important method to consider when discussing the conservation of a species.
ContributorsTurpen, Alexa (Author) / Murphree, Julie (Thesis director) / Collins, James (Thesis director) / Owens, Audrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2024-05
Description
Background: Dyslexia is a neurodevelopmental impacting reading and writing ability present in around 5 to 9 percent of the population. The etiology of the condition is not currently well understood. Purpose: To identify new genes of interest regarding the etiology of dyslexia, describe the interaction of those genes within known gene

Background: Dyslexia is a neurodevelopmental impacting reading and writing ability present in around 5 to 9 percent of the population. The etiology of the condition is not currently well understood. Purpose: To identify new genes of interest regarding the etiology of dyslexia, describe the interaction of those genes within known gene networks, and discuss potential relationships between their expression in the early developing brain and phenotypic outcomes. Method: With informed consent, participants’ phenotypic and exome data were collected. Phenotypic data were collected using assessments measuring reading and spelling ability. Exome data were collected via saliva samples and processed at the UW-CRDR. Exome data were then filtering using Seqr and compared across participant families. Certain genes with identical variations were visually validated using the Integrated Genome Viewer, and then investigated using STRING Network Analysis and the Human Brain Transcriptome. Results: Three genes were identified: BCL6, DNAH1, and DNAH12. Protein-protein interactions were confirmed between DNAH1 and DNAH12 via STRING Network Analysis. BLC6 and DNAH1 experience higher postnatal expression in the cerebellar cortex. DNAH12 experiences higher prenatal expression in the hippocampus. Discussion: The findings appear to be consistent with a heterogenous and polygenic model of dyslexia. The correlation between the participants’ genotypes and phenotypes is not strong enough to draw significant conclusions regarding genotype/phenotype connections. A larger participant sample size and analysis of a large pool of shared genes may reveal a clearer relationship.
ContributorsBanta, Claire (Author) / Peter, Beate (Thesis director) / Liu, Li (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2024-05