Matching Items (13)
Filtering by

Clear all filters

172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172907-Thumbnail Image.png
Description

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the
germ plasm, a substance in the germ cell that carries hereditary information. The
Germ-Plasm compiled Weismann's theoretical work and analyses of
other biologists' experimental work in the 1880s, and it provided a
framework to study development, evolution and heredity. Weismann
anticipated that the germ-plasm theory would enable researchers to
investigate the functions and material of hereditary substances.

Created2015-01-26
172919-Thumbnail Image.png
Description

Bacteria of the genus Wolbachia are
bacteria that live within the cells of their hosts. They infect a
wide range of arthropods (insects, arachnids, and crustaceans) and
some nematodes (parasitic roundworms). Scientists estimate that
Wolbachia exist in between seventeen percent and seventy-six percent of
arthropods

Bacteria of the genus Wolbachia are
bacteria that live within the cells of their hosts. They infect a
wide range of arthropods (insects, arachnids, and crustaceans) and
some nematodes (parasitic roundworms). Scientists estimate that
Wolbachia exist in between seventeen percent and seventy-six percent of
arthropods and nematodes. The frequency of the bacteria makes them
one of the most widespread parasites. In general, they are divided
into five groups, from A to E, depending of the species of their
host. They cause diverse reproductive and developmental changes on
their numerous invertebrate hosts. Several mechanisms, like the
feminization of the embryo's sexual characters, are involved in
those processes. To reproduce, Wolbachia often exploit their hosts'
reproductive processes. Additionally, they are symbiotic in that they are
necessary for the normal development of organisms in some species

Created2015-01-29
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
172869-Thumbnail Image.png
Description

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or apoptosis. The concept of the Hayflick Limit revised Alexis
Carrel's earlier theory, which stated that cells can replicate
themselves infinitely. Leonard Hayflick developed the concept while
at the Wistar Institute in Philadelphia,
Pennsylvania, in 1965. In his 1974 book Intrinsic
Mutagenesis, Frank Macfarlane Burnet named the concept after
Hayflick. The concept of the Hayflick Limit helped scientists study
the effects of cellular aging on human populations from embryonic
development to death, including the discovery of the effects of
shortening repetitive sequences of DNA, called telomeres, on the
ends of chromosomes. Elizabeth Blackburn, Jack Szostak and Carol
Greider received the Nobel Prize in Physiology or Medicine in 2009
for their work on genetic structures related to the Hayflick
Limit.

Created2014-11-14
172873-Thumbnail Image.png
Description

Theophilus Shickel Painter studied the structure and
function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at
the University of Texas at Austin in Austin, Texas. In the 1920s
and 1930s, Painter studied the chromosomes of the salivary gland
giant

Theophilus Shickel Painter studied the structure and
function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at
the University of Texas at Austin in Austin, Texas. In the 1920s
and 1930s, Painter studied the chromosomes of the salivary gland
giant chromosomes of the fruit fly (Drosophila
melanogaster), with Hermann J. Muller. Muller and Painter
studied the ability of X-rays to cause changes in the chromosomes
of fruit flies. Painter also studied chromosomes in mammals.
He investigated the development of the male gamete, a process
called spermatogenesis, in several invertebrates and vertebrates,
including mammals. In addition, Painter studied the role the
Y-chromosome plays in the determination and development of the male
embryo. Painter's research concluded that egg cells fertilized by
sperm cell bearing an X-chromosome resulted in a female embryo,
whereas egg cells fertilized by a sperm cell carrying a
Y-chromosome resulted in a male embryo. Painter's work with
chromosomes helped other researchers determine that X- and
Y-chromosomes are responsible for sex determination.

Created2014-11-22
172875-Thumbnail Image.png
Description

Dennis Lo, also called Yuk Ming Dennis Lo, is a
professor at the Chinese University of Hong Kong in Hong Kong,
China. In 1997, Lo discovered fetal DNA in maternal
plasma, which is the liquid component of a pregnant woman's
blood. By 2002, Lo distinguished the

Dennis Lo, also called Yuk Ming Dennis Lo, is a
professor at the Chinese University of Hong Kong in Hong Kong,
China. In 1997, Lo discovered fetal DNA in maternal
plasma, which is the liquid component of a pregnant woman's
blood. By 2002, Lo distinguished the DNA differences between pregnant women
and their fetuses, enabling scientists to identify fetal DNA in pregnant
women's blood. Lo used his discoveries to develop several
non-invasive and prenatal genetic tests, including tests for blood
group status and Trisomy 21, also called Down's Syndrome.
Lo's discovery of fetal DNA in maternal plasma lessened the risks to pregnant women and fetuses during prenatal testing, and it enabled early
identification of potential genetic mutations in developing
fetuses.

Created2014-11-04
172878-Thumbnail Image.png
Description

In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on

In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on that
research included Kiarash Khosrotehrani, Kirby L. Johnson, Dong
Hyun Cha, Robert N. Salomon, and Diana W. Bianchi. The researchers
reported that the fetal cells passed to a pregnant woman during
pregnancy could develop into multiple cell types in her organs. They
studied these differentiated fetal cells in a cohort of women
fighting different diseases. The researchers found that the fetal
cells in the women differentiated into different cell types under
the influence of maternal tissues, and that those differentiated
cells concentrated in the tissue surrounding diseased tissues.
According to the team, this response could be a therapeutic response
to the disease in the once pregnant woman. The research indicated the long
lasting effects of pregnancy in a woman's body.

Created2014-11-14
172882-Thumbnail Image.png
Description

Harry Hamilton Laughlin helped lead the eugenics
movement in the United States during the early twentieth century.
The US eugenics movement of the early twentieth century sought to
reform the genetic composition of the United States population through
sterilization and other restrictive reproductive measures. Laughlin

Harry Hamilton Laughlin helped lead the eugenics
movement in the United States during the early twentieth century.
The US eugenics movement of the early twentieth century sought to
reform the genetic composition of the United States population through
sterilization and other restrictive reproductive measures. Laughlin
worked as superintendent and assistant director of the Eugenics
Research Office (ERO) at Cold Spring Harbor Laboratory in Cold
Spring Harbor, New York, alongside director Charles Davenport.
During Laughlin's career at the ERO, Laughlin studied human familial
ancestry, called pedigrees, and in 1922 published the book Eugenical
Sterilization in the United States, which influenced
sterilization laws in multiple states. Laughlin's support of
compulsory sterilization to control the reproductive capacity of
entire populations influenced the history of eugenics and
reproductive medicine.

Created2014-12-19
172893-Thumbnail Image.png
Description

The Stazione Zoologica Anton Dohrn (Anton Dohrn Zoological Station) is a public research institute focusing on biology and biodiversity. Hereafter called the Station, it was founded in Naples, Italy, in 1872 by Anton Dohrn. The type of research conducted at the Station has varied since it was created, though

The Stazione Zoologica Anton Dohrn (Anton Dohrn Zoological Station) is a public research institute focusing on biology and biodiversity. Hereafter called the Station, it was founded in Naples, Italy, in 1872 by Anton Dohrn. The type of research conducted at the Station has varied since it was created, though initial research focused on embryology. At the turn of the twentieth century, researchers at the Station established the sea urchin (Echinoidea) as a model organism for embryological research. A number of scientists conducted experiments on embryos and embryonic development at the Station from the 1890s to the 1930s, including Hans Driesch, Jacques Loeb, Theodor Boveri, Otto Warburg, Hans Spemann and Thomas Morgan. Research completed during this time at the Station contributed to the study of experimental embryology and developmental biology and helped shape the history of embryology.

Created2014-12-22