Matching Items (13)
Filtering by

Clear all filters

155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
173385-Thumbnail Image.png
Description

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common fruit fly. Throughout the early twentieth century, researchers were gathering evidence that genes, or what Gregor Mendel had called the factors that control heredity, are located on chromosomes. At Columbia, Morgan disputed the theory, but in 1916, Calvin Bridges published evidence that, according to Morgan, did much to convince skeptics of that theory. Bridges also established that specific chromosomes function in determining sex in Drosophila.

Created2017-05-19
173388-Thumbnail Image.png
Description

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In 1913, as an undergraduate, Sturtevant created one of the earliest genetic maps of a fruit fly chromosome, which showed the relative positions of genes along the chromosome. At the California Institute of Technology in Pasadena, California, he later created one of the first fate maps, which tracks embryonic cells throughout their development into an adult organism. Sturtevant’s contributions helped scientists explain genetic and cellular processes that affect early organismal development.

Created2017-05-20
173396-Thumbnail Image.png
Description

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm and egg cells. Nondisjunction, as described by Bridges, caused sperm or egg cells to contain abnormal amounts of chromosomes. In some cases, that caused the offspring produced by the sperm or eggs to display traits that they would typically not have. His research on nondisjunction provided evidence that chromosomes carry genetic traits, including those that determine the sex of an organism.

Created2017-05-18
173399-Thumbnail Image.png
Description

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males. Through more breeding analysis, Morgan found that the genetic factor controlling eye color in the flies was on the same chromosome that determined sex. That result indicated that eye color and sex were both tied to chromosomes and helped Morgan and colleagues establish that chromosomes carry the genes that allow offspring to inherit traits from their parents.

Created2017-05-22
173402-Thumbnail Image.png
Description

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila,

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila, the common fruit fly. In his experiments, Sturtevant determined the relative positions of six genetic factors on a fly’s chromosome by creating a process called gene mapping. Sturtevant’s work on gene mapping inspired later mapping techniques in the twentieth and twenty-first centuries, techniques that helped scientists identify regions of the chromosome that when mutated cause organisms to develop abnormally and to create treatments to cure those kinds of disorders.

Created2017-05-22
173361-Thumbnail Image.png
Description

Hermann Joseph Muller studied the effects of x-ray radiation on genetic material in the US during the twentieth century. At that time, scientists had yet to determine the dangers that x-rays presented. In 1927, Muller demonstrated that x-rays, a form of high-energy radiation, can mutate the structure of genetic material.

Hermann Joseph Muller studied the effects of x-ray radiation on genetic material in the US during the twentieth century. At that time, scientists had yet to determine the dangers that x-rays presented. In 1927, Muller demonstrated that x-rays, a form of high-energy radiation, can mutate the structure of genetic material. Muller warned others of the dangers of radiation, advising radiologists to protect themselves and their patients from radiation. He also opposed the indiscriminate use of radiation in medical and industrial fields. In 1946, he received the Nobel Prize in Physiology or Medicine for his lifetime work involving radiation and genetic mutation. Muller's worked enabled scientists to directly study mutations without having to rely on naturally occurring mutations. Furthermore, Muller showed that radiation, even in small doses, leads to genetic mutations primarily in germ cells, cells which give rise to sperm and egg cells.

Created2017-05-25
DescriptionThis thesis summarizes the process of writing a children's book about achondroplasia directed at children without genetic disorders. The thesis also includes the children's book The Genetics of Little People that was created during the project.
ContributorsWatkins, Payton (Author) / Binsfeld, Allison (Co-author) / Wilson, Melissa (Thesis director) / Hunt-Brendish, Katherine (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
164796-Thumbnail Image.png
Description

This thesis summarizes the process of writing a children's book about achondroplasia directed at children without genetic disorders. The thesis also includes the children's book The Genetics of Little People that was created during the project.

ContributorsWatkins, Payton (Author) / Binsfeld, Allison (Co-author) / Wilson, Melissa (Thesis director) / Hunt-Brendish, Katherine (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
164797-Thumbnail Image.png
Description

This thesis summarizes the process of writing a children's book about achondroplasia directed at children without genetic disorders. The thesis also includes the children's book The Genetics of Little People that was created during the project.

ContributorsWatkins, Payton (Author) / Binsfeld, Allison (Co-author) / Wilson, Melissa (Thesis director) / Hunt-Brendish, Katherine (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05