Matching Items (10)
Filtering by

Clear all filters

136296-Thumbnail Image.png
Description
Modern Americans ignorantly live under a blanket of unread terms, conditions, and binding contracts. Often, these contracts (mostly associated with products and services) come and go with little effect. Periodically, the products or services cause the consumer harm, leading them to seek repair. The consumer then realizes that all the

Modern Americans ignorantly live under a blanket of unread terms, conditions, and binding contracts. Often, these contracts (mostly associated with products and services) come and go with little effect. Periodically, the products or services cause the consumer harm, leading them to seek repair. The consumer then realizes that all the fine print they failed to read makes an impactful legal difference. This paper analyzes the work of Professor Radin through her book, Boilerplate. It goes on to explore many other arguments presented by contract theorists and makes substantial claims regarding the dangers of boilerplate (unread terms and conditions).
ContributorsBecker, Alexander Daniel (Author) / Koretz, Lora (Thesis director) / Calleros, Charles (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Department of English (Contributor)
Created2015-05
137267-Thumbnail Image.png
Description
It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that

It is important to consider factors that contribute to successful fertilization and the development of viable offspring. Better understanding the factors that contribute to infertility can be used to assist in the development of viable offspring, especially for human beings looking to successfully reproduce. Identifying paternal effect genes, genes that come from the father, introduces more targets that can be manipulated to produce specific reproductive effects. Use of Drosophila melanogaster as a model to study reproduction has increased, in part, due to the use of the GAL4 system. In this system, the GAL4 gene encodes an 881 amino acid protein that binds to the 4-site Upstream Activating Sequence (UAS) to induce transcription of the gene of interest. These sequences constitute the two components of the system: the driver (GAL4) and the responder (gene of interest) \u2014 each of which is maintained as a separate parental line. Effects of the GAL4 driver line "driving" transcription of the responder can be assessed by examining the offspring. One of the more common uses of the GAL4 system involves analyzing phenotypic effects of reducing or eliminating expression of a target gene through the induction of RNAi transcription, which often results in toxicity, lethality, or reduced viability. Utilizing these principles, we strove to demonstrate the effect of knocking down the expression of testis-specific sperm-leucyl-aminopeptidases gene CG13340 on progeny by inducing expression of RNAi with two distinct GAL4 driver lines - one with a nonspecific actin-binding activation sequence and the other with a testis-specific activation sequence. Comparison of both GAL4 driver lines to crosses using N01 wild type ("wt") flies verify that inducing RNAi transcription using the GAL4 system results in reduction of proper offspring development. Further studies using D. melanogaster and the GAL4 system can improve knowledge of factors contributing to male fertility and also be applied to better understand mammalian, specifically human, fertility.
ContributorsEvans, Donna Marie (Author) / Karr, Timothy L. (Thesis director) / Roland, Kenneth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2014-05
149623-Thumbnail Image.png
Description
This dissertation consists of three essays. The first essay studies quality increases in the medical sector. A large and growing share of income is spent on medical goods and services each year. Existing measures of the price and quantity of medical goods and services do not take changes in quality

This dissertation consists of three essays. The first essay studies quality increases in the medical sector. A large and growing share of income is spent on medical goods and services each year. Existing measures of the price and quantity of medical goods and services do not take changes in quality into account. Ample micro evidence suggests the quality of medical goods and services has, in fact, improved over time. This essay estimates changes in medical quality at the aggregate level. To do so, this essay develops and estimates a dynamic structural model of the demand for medical purchases. The main result of this essay is that the quality of medical goods and services has increased by 2.2 percent per year between 1996 and 2007. One implication is that, after adjusting for changes in medical quality, the relative price of medical goods and services fell by 0.5 percent per year over this period, whereas Bureau of Labor Statistics estimates suggest it rose by 1.6 percent per year. The second essay develops a method to infer the life cycle profile of the quality of medical care in accumulating of health capital and the depreciation rate of health capital. To do so, this essay develops a life cycle model of the demand for medical purchases in which individuals invest in health capital. The use of these methods is illustrated by inferring the life cycle profile of the quality of medical care and the depreciation rate of health capital for 25-84 year old males between 1996 and 2007. The third essay studies implementable outcomes in partnership games. In this setting, it is well known that contracts which satisfy budget balance cannot implement efficient outcomes. Then, it is natural to ask which outcomes can be implemented. This essay characterizes the outcomes of all budget balancing contracts. With standard regularity conditions on production and utility functions, all outcomes which can be implemented by a budget balancing contract can be implemented by a linear contract. This implies that, with respect to welfare, we can consider a compact set of implementable outcomes without loss of generality. The budget-balancing contract whose outcome maximizes welfare, therefore, exists.
ContributorsLawver, Daniel (Author) / Prescott, Edward C. (Thesis advisor) / Rogerson, Richard (Committee member) / Hosseini, Roozbeh (Committee member) / Arizona State University (Publisher)
Created2011
Description

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.

ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
Description
Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.
ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
Description
Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is

Most protein-coding mRNAs in eukaryotes must undergo a series of processing steps so they can be exported from the nucleus and translated into protein. Cleavage and polyadenylation are vital steps in this maturation process. Improper cleavage and polyadenylation results in variation in the 3′ UTR length of genes, which is a hallmark of various human diseases. Previous data have shown that the majority of 3’UTRs of mRNAs from the nematode Caenorhabditis elegans terminate at an adenosine nucleotide, and that mutating this adenosine disrupts the cleavage reaction. It is unclear if the adenosine is included in the mature mRNA transcript or if it is cleaved off. To address this question, we are developing a novel method called the Terminal Adenosine Methylation (TAM) assay which will allow us to precisely define whether the cleavage reaction takes place upstream or downstream of this terminal adenosine. The TAM Assay utilizes the ability of the methyltransferase domain (MTD) of the human methyltransferase METTL16 to methylate the terminal adenosine of a test mRNA transcript prior to the cleavage reaction in vivo. The presence or absence of methylation at the terminal adenosine will then be identified using direct RNA sequencing. This project focuses on 1) preparing the chimeric construct that positions the MTD on the mRNA cleavage site of a test mRNA transcript, and 2) testing the functionality of this construct in vitro and developing a transgenic C. elegans strain expressing it. The TAM assay has the potential to be a valuable tool for elucidating the role of the terminal adenosine in cleavage and polyadenylation.
ContributorsKeane, Sara (Author) / Mangone, Marco (Thesis director) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor)
Created2023-05
Description

A mutation rate refers to the frequency at which DNA mutations occur in an organism over time. In organisms, mutations are the ultimate source of genetic variation on which selection may act. However, a large number of mutations over time can be detrimental to the cell. Mutation rates are the

A mutation rate refers to the frequency at which DNA mutations occur in an organism over time. In organisms, mutations are the ultimate source of genetic variation on which selection may act. However, a large number of mutations over time can be detrimental to the cell. Mutation rates are the frequency at which these new mutations arise over time. This can give great insight into DNA repair mechanisms abilities as well as the mutagenic abilities of selected factors. CRISPR-Cas9 is a powerful tool for genome editing, but its off-target effects are not yet fully understood and studied. With its increasing implementation in science and medicine, it is crucial to understand the mutagenic potential of the tool. S. cerevisiae is a model organism for studying genetics due to its fast growth rate and eukaryotic nature. By integrating CRISPR-Cas9 systems into S. cerevisiae, the mutational burden of the technology can be measured and quantified using fluctuation assays. In this experiment, a fluctuation assay using canavanine selective plates was conducted to determine the mutational burden of CRISPR-Cas9 in S. cerevisiae. Multiple trials revealed that various strains of CRISPR-Cas9 had a mutation rate up to 3-fold higher than that of wild-type S. cerevisiae. This information is essential in improving the precision and safety of CRISPR-Cas9 editing in various applications, including gene therapy and biotechnology.

ContributorsBrown, Adalyn (Author) / Lyncg, Michael (Thesis director) / Geiler-Samerotte, Kerry (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The purpose of the project is to create a survey that will be sent out to thousands of members of the Global Alliance for Genomics and Health (GA4GH) to update GA4GH's Catalogue of Genomic Data Initiatives online. GA4GH's Catalogue of Genomic Data Initiatives has not been updated in several years,

The purpose of the project is to create a survey that will be sent out to thousands of members of the Global Alliance for Genomics and Health (GA4GH) to update GA4GH's Catalogue of Genomic Data Initiatives online. GA4GH's Catalogue of Genomic Data Initiatives has not been updated in several years, leading to outdated and incorrect information. The survey will be used to gather information from genetic groups worldwide to update and increase the amount of data in the Catalogue on the GA4GH website. The questions were created in collaboration with GA4GH and the Human Pangenome Reference Consortium (HPRC). The actual survey was designed on Qualtrics.

ContributorsKapadia, Venus (Author) / Cook-Deegan, Robert (Thesis director) / Tsosie, Krystal (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsKapadia, Venus (Author) / Cook-Deegan, Robert (Thesis director) / Tsosie, Krystal (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2023-05
ContributorsKapadia, Venus (Author) / Cook-Deegan, Robert (Thesis director) / Tsosie, Krystal (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2023-05