Matching Items (12)
Filtering by

Clear all filters

147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136012-Thumbnail Image.png
Description
Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective in the treatment of multiple types of cancer, including lung cancer. However, the disadvantages of using Bex include increased instances of hypothyroidism and excessive concentrations of blood triglycerides. If an analog of Bex can be developed which retains high affinity RXR binding similar to the 9-cis retinoic acid while exhibiting less interference for heterodimerization pathways, it would be of great clinical significance in improving the quality of life for patients with CTCL. This thesis will detail the biological profiling of additional novel (Generation Two) analogs, which are currently in submission for publication, as well as that of Generation Three analogs. The results from these studies reveal that specific alterations in the core structure of the Bex "parent" compound structure can have dramatic effects in modifying the biological activity of RXR agonists.
ContributorsYang, Joanna (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Hibler, Elizabeth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
135639-Thumbnail Image.png
Description
Vitamin D, a bioactive lipid and essential nutrient, is obtained by humans through either endogenous synthesis in response to UV light exposure or via nutritional intake. Once activated to its hormonal form, vitamin D binds to and activates the nuclear vitamin D receptor (VDR). Activation of VDR is known to

Vitamin D, a bioactive lipid and essential nutrient, is obtained by humans through either endogenous synthesis in response to UV light exposure or via nutritional intake. Once activated to its hormonal form, vitamin D binds to and activates the nuclear vitamin D receptor (VDR). Activation of VDR is known to modulate gene transcription in vitamin D target tissues such as kidney, colon, and bone; however, less is known about the ability of VDR to respond to "nutritional modulators". One such potential VDR modulator is resveratrol, a plant-derived polyphenol and potent antioxidant nutrient that also functions as a chemopreventative. Resveratrol is known to activate sirtuin-1, a deacetylase enzyme with potential anti-aging properties. This study explores the potential for resveratrol, an anticancer nutraceutical, to upregulate VDR activity through its effector protein, sirtuin-1. Furthermore, due to its putative interactions with several intracellular signaling pathways, klotho has been proposed as an anti-aging protein and tumor suppressor gene, while the Wnt/β-catenin signaling pathway drives enhanced cellular proliferation leading to numerous types of cancers, especially colorectal neoplasia. Thus, the ability of klotho to cooperate with vitamin D to inhibit oncogenic β-catenin signaling was also analyzed. The experiments and resultant data presented in this thesis explore the potential role of VDR as a physiologically relevant nutritional sensor in human cells. This novel study reveals the importance of nutrient modulation of the VDR system by vitamin D and resveratrol and how this might represent a molecular mechanism that is responsible for the putative anti-cancer actions of vitamin D. Furthermore, this study enhances our understanding of how vitamin D/VDR and resveratrol interact with klotho and how this interaction affects β-catenin signaling to mitigate oncogenic growth and differentiation. This works demonstrates that the vitamin D hormone serves as a likely chemopreventive agent for various types of cancers through control of anti-oxidation and cellular proliferation pathways via its nuclear receptor. Our results also indicate the potential for resveratrol, an anticancer nutraceutical, to upregulate VDR activity through SIRT1. Furthermore, the novel data presented in this work illustrate that klotho, an anti-aging protein, cooperates with vitamin D to synergistically inhibit oncogenic β-catenin signaling. Ultimately, this study enhances our understating of the molecular pathways that underpin nutritional chemoprevention, and how modulation of these pathways via dietary intervention may lead to advances in public health strategies to eventually curb carcinogenesis.
ContributorsKhan, Zainab (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135926-Thumbnail Image.png
Description
The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal

The significance of hormonal vitamin D in the numerous facets of health stresses the importance of elucidating the molecular mechanism(s) associated with 1,25D-VDR signaling modulators (e.g., resveratrol and sirtuin-1). Resveratrol (Res), a natural antioxidant, is a potent activator of NAD-dependent deacetylase sirtuin-1 (SIRT-1), an enzyme associated with longevity in animal models. This present study employed mammalian 2-hybrid (M2H) and vitamin D responsive element (VDRE)-based transcriptional assays to investigate the potential effects of Res and SIRT-1 on VDR signal transduction. Results from VDRE-based assays indicate that Res and SIRT-1 potentiate 1,25D-VDR activity via cell-and-promoter-specific pathways. In addition, 1,25D displacement experiments revealed an increase in VDR-bound radiolabeled 1,25D in the presence of Res, suggesting that Res may potentiate VDR transactivation by stimulating 1,25D binding. M2H assays in HEK293 cells were then utilized to assess levels of interaction between VDR and VDR comodulators, including RXR, SRC-1, and DRIP-205. Both Res and SIRT-1 increased the ability of VDR to associate with RXR; however, SRC-1 and DRIP-205 interactions were not enhanced. The activity of a novel, non-acetylatable VDR mutant, K413R, was probed revealing that K413R possesses amplified transactivation capacity over wild-type VDR. A SIRT-1 inhibitor, EX-527, was used to suppress endogenous SIRT-1, resulting in significantly decreased VDR transactivation. Finally, qPCR results in HEK293 cells revealed that the 1,25D-mediated induction of CYP24A1, an endogenous VDR target gene, was enhanced (85%) by SIRT-1 while Res increased CYP24A1 expression by 294%. The combination of 1,25D, SIRT-1, and Res amplified CYP24A1 expression by 326% over 1,25D, although this effect did not reach statistical significance when compared to the Res only treated group. We conclude that acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This loop is suppressed by resveratrol/SIRT-1-catalyzed deacetylation of VDR, restoring VDR activity. The two compounds, 1,25-dihydroxyvitamin D (1,25D, vitamin D) and 5-hydroxytryptamine (5-HT, serotonin), have been proposed to play a significant role in abnormal social behavior associated with psychological conditions including autism spectrum disorders (ASDs) and depression; however, the mechanism underlying these associations has yet to be elucidated. Deficiencies in 1,25D or 5-HT have been linked to the increased incidence of ASDs. Thus, examining the modulation of genes involved in 5-HT biosynthesis, reuptake, and degradation is fundamental in linking low 1,25D levels to the increased incidence of psychiatric disorders. We propose that 1,25D regulates tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway of 5-HT. In order to evaluate the regulation of TPH2 in neuronal cells, three formulations of media were examined to optimize the cell culture conditions necessary for growth and morphology of embryonic rat medullary raphe (B14) serotonergic neurons. Next, quantitative real time-PCR (qPCR) was utilized to examine TPH2 expression in cultured human glioblastoma (U-87) cells and rat serotonergic neurons (B-14). Human TPH2 mRNA in U-87 cells was induced dose-dependently resulting in a 2.4-fold increase at 10 nM 1,25D. Strikingly, TPH2 mRNA in B-14 cells was observed to be 26- to 86-fold upregulated at 10 nM 1,25D; however, 1 nM and 100 nM 1,25D elicited significantly smaller inductions (8-fold and 1.2-fold, respectively).
ContributorsSabir, Marya Sabah (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / Sandrin, Todd R. (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
131422-Thumbnail Image.png
Description
In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the

In most bird species, females disperse prior to their first breeding attempt, while males remain close to the place they were hatched for their entire lives (Greenwood and Harvey (1982)). Explanations for such female bias in natal dispersal have focused on the potential benefits that males derive from knowing the local environment to establish territories, while females search for suitable mates (Greenwood (1980)). However, the variables shaping dispersal decisions appear more complex (Mabry et al. (2013), Végvári et al. (2018)). There are a number of different variables that could act as a driving force behind dispersal including the social mating system, food competition, inbreeding avoidance, predation, and others. Here, we investigate whether females are the dispersing sex in great-tailed grackles, which have a mating system where the males hold territories and the females choose which territory to place their nest in (Johnson et al. (2000)). We used genetic approaches to identify sex biases in the propensity to disperse. In the experiment, we found that the male grackles were less related to each other while the female grackles were more related to each other. Building on that, the average distance between closely related individuals of the male group was longer than the average distance of closely related females. But, the mantel correlograms for the males and females both lack a consistent trend. Overall, the results indicated suggest that the males are the dispersing sex while the females are potentially philopatric and that the average dispersal distance for the grackle is greater than 2000 meters, the size of the sampling range used in the experiment. These results will inform our long-term study on the relationship between behavioral flexibility and rapid geographic range expansion by elucidating which individuals are likely to experience similar conditions across their lives, and which are likely to face new conditions when they become breeders.
ContributorsSevchik, August L (Author) / Langergraber, Kevin (Thesis director) / Logan, Corina (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131432-Thumbnail Image.png
Description
Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on

Vitamin D3 (cholecalciferol) is an essential micronutrient that plays a key role in developmental growth and lifespan in mammals. However, few studies have shown how vitamin D3 plays its vital functions in arthropods. Here, we examined the effects of full (13.3 IU/mL) and half dose (6.65 IU/mL) vitamin D3 on the growth and lifespan of Drosophila melanogaster. Vitamin B12 is another micronutrient that shows decreases absorption in elderly patients and might be linked to symptoms associated with aging rather than lifespan, but again, the effects of vitamin B12 supplementation in arthropods is poorly characterized. Results showed that both full and half doses of vitamin D3 and B12 do not significantly alter the timing of pupariation or adult eclosion. Similarly, the mortality rate of adult D. melanogaster exposed to vitamin B12 or higher doses of vitamin D3 was not significantly decreased or increased. However, a low dose of vitamin D3 did significantly lower the mortality rate of D. melanogaster. The genetic composition of Drosophila for vitamin B12 and D metabolism showed similarities in humans. However, there are no biological evidences if these genes are functional thus, this may explain the results of this study.
ContributorsRebonza, Edzel May Suico (Author) / Hackney Price, Jennifer (Thesis director) / Jurutka, Peter (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131150-Thumbnail Image.png
Description
Immediate early genes (IEGs) are rapidly activated in response to an environmental stimulus, and most code for transcription factors that mediate processes of synaptic plasticity, learning, and memory. EGR3, an immediate early gene transcription factor, is a mediator of biological processes that are disrupted in patients with schizophrenia (SCZ). A

Immediate early genes (IEGs) are rapidly activated in response to an environmental stimulus, and most code for transcription factors that mediate processes of synaptic plasticity, learning, and memory. EGR3, an immediate early gene transcription factor, is a mediator of biological processes that are disrupted in patients with schizophrenia (SCZ). A microarray experiment conducted by our lab revealed that Egr3 also regulates genes involved in DNA damage response. A recent study revealed that physiological neuronal activity results in the formation of DNA double-stranded breaks (DSBs) in the promoters of IEGs. Additionally, they showed that these DSBs are essential for inducing the expression of IEGs, and failure to repair these DSBs results in the persistent expression of IEGs. We hypothesize that Egr3 plays a role in repairing activity- induced DNA DSBs, and mice lacking Egr3 should have an abnormal accumulation of these DSBs. Before proceeding with that experiment, we conducted a preliminary investigation to determine if electroconvulsive stimulation (ECS) is a reliable method of inducing activity- dependent DNA damage, and to measure this DNA damage in three subregions of the hippocampus: CA1, CA3, and dentate gyrus (DG). We asked the question, are levels of DNA DSBs different between these hippocampal subregions in animals at baseline and following electroconvulsive stimulation (ECS)? To answer this question, we quantified γ-H2AX, a biomarker of DNA DSBs, in the hippocampal subregions of wildtype mice. Due to technical errors and small sample size, we were unable to substantiate our preliminary findings. Despite these shortcomings, our experimental design can be modified in future studies that investigate the role of Egr3 in activity-induced DNA damage repair.
ContributorsKhoshaba, Rami Samuel (Author) / Newbern, Jason (Thesis director) / Gallitano, Amelia (Committee member) / Marballi, Ketan (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132599-Thumbnail Image.png
Description
When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented

When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented in this paper reports and characterizes these faster growing colonies (revertants) in an attempt to dissect the mechanism by which they overcome the TonB deficiency. Genomic analysis revealed mutations in yejM, a putative inner-to-outer membrane cardiolipin transporter, which are responsible for the faster growth phenotype in a tonB mutant background. Further characterization of the revertants revealed that they display hypersensitivity to vancomycin, a large antibiotic that is normally precluded from entering E. coli cells, and leaked periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. In the absence of wild type tonB, however, the deletion of all known of cardiolipin synthase genes (clsABC) did not produce the phenotype similar to mutations in the yejM gene, suggesting the absence of cardiolipin from the outer membrane per se is not responsible for the increased outer membrane permeability. These data show that a defect in lipid biogenesis and transport can compromise outer membrane permeability barrier to allow siderophore intake and that YejM may have additional roles other than transporting cardiolipin.
ContributorsQiu, Nan (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Yu, Julian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134659-Thumbnail Image.png
Description
Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016,

Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016, which provides the research basis of this thesis, suggests that the coiled-coil domain of yGle1 is best crystallized in dicationic aqueous conditions of pH ~8.0 and 10\u201420% PEG 8000. Further exploration of crystallizable microconditions revealed a favorability toward lower pH and lower PEG concentration. Following the discovery of the protein's native crystallography conditions, a comprehensive meta-analysis of scientific literature on Gle1 was conducted on the association of Gle1 mutations with neuron disease.
ContributorsGaetano, Philip Pasquale (Author) / Foy, Joseph (Thesis director) / Dawson, T. Renee (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134705-Thumbnail Image.png
Description
Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and

Bexarotene (Bex) is a FDA-approved drug used to treat cutaneous T-cell lymphoma (CTCL). It binds with high affinity to the retinoid-X-receptor (RXR), a nuclear receptor implicated in numerous biological pathways. Bex may have the potential to attenuate estrogenic activity by acting as an estrogen receptor alpha (ERα) signaling antagonist, and can therefore be used to treat ERα-positive cancers, such as breast cancer. Using dual luciferase reporter assays, real-time qRT-PCR, and metabolic proliferation assays, the anti-estrogenic properties of Bex were ascertained. However, since Bex produces numerous contraindications, select novel RXR drug analogs were also evaluated. Results revealed that, in luciferase assays, Bex could significantly (P < 0.01) inhibit the transcriptional activity of ERα, so much so that it rivaled ER pan-antagonist ZK164015 in potency. Bex was also able to suppress the proliferation of two breast cancer cell models, MCF-7 and T-47D, and downregulate the expression of an estrogen receptor target gene (A-myb), which is responsible for cell proliferation. In addition, novel analogs A30, A33, A35, and A38 were evaluated as being more potent at inhibiting ERE-mediated transcription than Bex at lower concentrations. Analogs A34 and A35 were able to suppress MCF-7 cell proliferation to a degree comparable to that of Bex. Inhibition of T-47D cell proliferation, by contrast, was best achieved by analogs A34 and A36. For those with ERα – positive breast cancer who are refractory to current chemotherapeutics used to treat breast cancer, Bex and its analogs may prove to be useful alternative options.
ContributorsBains, Supreet (Author) / Jurutka, Peter (Thesis director) / Hackney Price, Jennifer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12