Matching Items (2)
Filtering by

Clear all filters

133599-Thumbnail Image.png
Description
The goal of my study is to test the overarching hypothesis that art therapy is effective because it targets emotional dysregulation that often accompanies significant health stressors. By reducing the salience of illness-related stressors, art therapy may improve overall mood and recovery, particularly in patients with cancer. After consulting the

The goal of my study is to test the overarching hypothesis that art therapy is effective because it targets emotional dysregulation that often accompanies significant health stressors. By reducing the salience of illness-related stressors, art therapy may improve overall mood and recovery, particularly in patients with cancer. After consulting the primary literature and review papers to develop psychological and neural mechanisms at work in art therapy, I created a hypothetical experimental procedure to test these hypotheses to explain why art therapy is helpful to patients with chronic illness. Studies found that art therapy stimulates activity of multiple brain regions involved in memory retrieval and the arousal of emotions. I hypothesize that patients with chronic illness have a reduced capacity for emotion regulation, or difficulty recognizing, expressing or altering illness-related emotions (Gross & Barrett, 2011). Further I hypothesize that art therapy improves mood and therapeutic outcomes by acting on the emotion-processing regions of the limbic system, and thereby facilitating the healthy expression of emotion, emotional processing, and reappraisal. More mechanistically, I propose art therapy reduces the perception or salience of stressors by reducing amygdala activity leading to decreased activation of the hypothalamic-pituitary-adrenal (HPA) axis. The art therapy literature and my hypothesis about its mechanisms of action became the basis of my proposed study. To assess the effectiveness of art therapy in alleviating symptoms of chronic disease, I am specifically targeting patients with cancer who exhibit a lack of emotional regulation. Saliva is collected 3 times a week on the day of intervention: morning after waking, afternoon, and evening. Stress levels are tested using one-hour art therapy sessions over the course of 3 months. The Perceived Stress Scale (PSS) assesses an individual's perceived stress and feelings in past and present situations, for the control and intervention group. To measure improvement in overall mood, 10 one-hour art sessions are performed on patients over 10 weeks. A one-hour discussion analyzing the participants' artwork follows each art session. The Spielberger State-Trait Anxiety Inventory (STAI) assesses overall mood for the intervention and control groups. I created rationale and predictions based on the intended results of each experiment.
ContributorsAluri, Bineetha C. (Author) / Orchinik, Miles (Thesis director) / Davis, Mary (Committee member) / Essary, Alison (Committee member) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134795-Thumbnail Image.png
Description
Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether

Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether dendritic restructuring in CA3 neurons leads to region-specific changes in the dendritic complexity of CA1 neurons. Adult male Sprague-Dawley rats were restrained (wire mesh, 6h/d/21d) and brains were removed soon after restraint ended (Str-Imm) or after a 21d post-stress recovery period (Str-Rec). In addition, BDNF downregulation targeting the CA3 region prevents enhancement in dendritic complexity following recovery in chronically stressed rats, providing robust conditions to investigate the CA3-CA1 relationship. Consequently, rats were infused into the CA3 area with either an AAV vector with a coding sequence against BDNF (shRNA) or a sequence with no known mRNA complements (Scr). Apical and basal dendritic complexity of CA3 and CA1 was quantified by counting total dendritic bifurcations and dendritic intersections using the Sholl analysis (20 µm distances from soma). Please note that the quantification of the CA3 dendritic arbors was not part of this thesis project. The outcome of that investigation revealed that apical CA3 dendritic retraction was found in Str-Imm-Scr and Str-Rec-shRNA. For the CA1 apical area, gross dendritic bifurcation differences were not detected, but the Sholl quantification revealed regionally-enhanced dendritic complexity that varied by distance from the soma at the distal apical dendrites (Str-Imm-Scr) and proximal basal dendrites (Str-Rec-shRNA). For the latter, significant increases in basal branch points were detected with total branch point quantification method. Moreover, a correlation using all groups revealed a significant inverse relationship between CA3 apical dendritic complexity and CA1 basal dendritic complexity. The results demonstrate that chronic stress-induced CA3 apical dendritic retraction may relate to region-specific changes in CA1 dendritic complexity. The inability of past studies to detect changes in CA1 dendritic complexity may be due to the shortcoming of gross dendritic arbor measures in accounting for subtle region-specific alterations. To address this, the current study included a cohort with BDNF downregulated in the CA3 region. Overall, this suggests that decreased levels of BDNF in the hippocampus provide robust conditions in which changes to CA1 dendritic complexity can be detected.
ContributorsDaas, Eshaan Jatin (Author) / Conrad, Cheryl (Thesis director) / Orchinik, Miles (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12