Matching Items (7)
Filtering by

Clear all filters

137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137271-Thumbnail Image.png
Description
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating illness that causes the degeneration of both upper and lower motor neurons, leading to eventual muscle atrophy. ALS rapidly progresses into paralysis, with patients typically dying due to respiratory complications within three to five years from the

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating illness that causes the degeneration of both upper and lower motor neurons, leading to eventual muscle atrophy. ALS rapidly progresses into paralysis, with patients typically dying due to respiratory complications within three to five years from the onset of their symptoms. Even after many years of research and drug trials, there is still no cure, and current therapies only succeed in increasing life-span by approximately three months. With such limited options available for patients, there is a pressing need to not only find a cure, but also make new treatments available in order to ameliorate disease symptoms. In a genome-wide association study previously conducted by the Translational Genomics Research Institute (TGen), several single-nucleotide polymorphisms (SNPs) upstream of a novel gene, FLJ10968, were found to significantly alter risk for ALS. This novel gene acquired the name FGGY after publication of the paper. FGGY exhibits altered levels of protein expression throughout ALS disease progression in human subjects, and detectable protein and mRNA expression changes in a mouse model of ALS. We performed co-immunoprecipitation experiments coupled with mass spectrometry in order to determine which proteins are associated with FGGY. Some of these potential binding partners have been linked to RNA regulation, including regulators of the splicesomal complex such as SMN, Gemin, and hnRNP C. To further validate these findings, we have verified co-localization of these proteins with one another. We hypothesize that FGGY plays an important role in ALS pathogenesis, and we will continue to examine its biological function.
ContributorsTerzic, Barbara (Author) / Jensen, Kendall (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
132317-Thumbnail Image.png
Description
British Neuroscientist Adrian Owen documents in his book Into the Grey Zone difficult cases of patients between a state of brain death and consciousness. His team collected evidence that sug- gested patients—presumed to be brain dead—were partially or, in some cases, fully conscious. The two culturally dominant metaphysical accounts of

British Neuroscientist Adrian Owen documents in his book Into the Grey Zone difficult cases of patients between a state of brain death and consciousness. His team collected evidence that sug- gested patients—presumed to be brain dead—were partially or, in some cases, fully conscious. The two culturally dominant metaphysical accounts of consciousness, Cartesian dualism and eliminative physicalism, are unable to explain the presence of consciousness in Owen’s cases. To better understand the consciousness present in Owen’s cases I argue we should look to Ned Block’s distinction between phenomenal and access consciousness.
ContributorsQuint, Elana (Author) / Karen, Taliaferro (Thesis director) / Jeff, Watson (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

This paper provides a multidisciplinary analysis of the relationship between beauty and addiction, with a focus on the emerging field of neuroaesthetics. Neuroaesthetics investigates the neural mechanisms that underlie aesthetic experiences and how the brain cognitively processes beauty. Since there is a biological foundation of this report, I will predominantly

This paper provides a multidisciplinary analysis of the relationship between beauty and addiction, with a focus on the emerging field of neuroaesthetics. Neuroaesthetics investigates the neural mechanisms that underlie aesthetic experiences and how the brain cognitively processes beauty. Since there is a biological foundation of this report, I will predominantly discuss neuroanatomy, neurological studies, and the overlap in neural circuitry between beauty and addiction. In addition, I will discuss the philosophical roots of beauty, as well as the environmental elements involved. Chapter 1 begins by explaining the history of beauty and its importance. I discuss the main constituents of beauty and differentiate between key terms involved in the beauty experience. In order to understand the link between beauty and addiction, it is essential to have a knowledgeable background on what beauty is. Next, I discuss the neurobiology of addiction. The main component of this chapter involves the mesolimbic and mesocortical reward pathways. I also describe neuroanatomical terms involved in addiction. The last chapter considers the implications of neuroaesthetics in various studies, which primarily involve the use of fMRIs. I discuss the sensory evaluations of beauty and the brain regions involved in the beauty experience. From this, I found that the experience of beauty activates these main brain regions: PFC, amygdala, striatum, NAcc, cingulate, VTA, and most remarkably, field A1 of the mOFC. By combining the neurological studies with studies of aesthetics, I reached the conclusion that there is an overlap in the neural pathways during the experience of beauty and during addiction. Although it is necessary for further research to be conducted to properly declare this, I discovered that the pursuit of beauty can lead to addictive behaviors, as the reward centers of the brain are activated by aesthetic experiences.

ContributorsFarrell, Natalie (Author) / de Alcantara, Christiane Fontinha (Thesis director) / Conrad, Cheryl (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Marketing (Contributor)
Created2023-05
165711-Thumbnail Image.png
Description
The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the

The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the visual cortex of the brain). However, using the pRF model is very time consuming. Past research has focused on the creation of Convolutional Neural Networks (CNN) to mimic the pRF model in a fraction of the time, and they have worked well under highly controlled conditions. However, these models have not been thoroughly tested on real human data. This thesis focused on adapting one of these CNNs to accurately predict the retinotopy of a real human subject using a dataset from the Human Connectome Project. The results show promise towards creating a fully functioning CNN, but they also expose new challenges that must be overcome before the model could be used to predict the retinotopy of new human subjects.
ContributorsBurgard, Braeden (Author) / Wang, Yalin (Thesis director) / Ta, Duyan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description
The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse

The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse travels between chambers that contain a conspecific and an object confined under a wire cup. However, this test is unable to quantify interactive behaviors between pairs of mice, which could not be tracked until the recent development of machine learning programs that track animal behavior. In this study, both the three-chamber test and a novel freely-moving social interaction test assessed social behavior in untreated male and female mice, as well as in male mice injected with hM3Dq (excitatory) DREADDs. In the three-chamber test, significant differences were found in the time spent (female: p < 0.05, male: p < 0.001) and distance traveled (female: p < 0.05, male: p < 0.001) in the chamber with the familiar conspecific, compared to the chamber with the object, for untreated male, untreated female, and mice with activated hM3Dq DREADDs. A social memory test was added, where the object was replaced with a novel mouse. Untreated male mice spent significantly more time (p < 0.05) and traveled a greater distance (p < 0.05) in the chamber with the novel mouse, while male mice with activated hM3Dq DREADDs spent more time (p<0.05) in the chamber with the familiar conspecific. Data from the freely-moving social interaction test was used to calculate freely-moving interactive behaviors between pairs of mice and interactions with an object. No sex differences were found, but mice with excited hM3Dq DREADDs engaged in significantly more anogenital sniffing (p < 0.05) and side-side contact (p < 0.05) behaviors. All these results indicate how machine learning allows for nuanced insights into how both sex and chemogenetic excitation impact social behavior in freely-moving mice.
ContributorsNelson, Megan (Author) / Verpeut, Jessica (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
Description
The field of neuroscience continues to grow in findings and opportunity. Similarly, this Honor’s Thesis aims to increase the diversity within the field. This children's book, Making Sense of Your Senses seeks to foster an early interest in the wonders of the brain by making neuroscience accessible to young readers

The field of neuroscience continues to grow in findings and opportunity. Similarly, this Honor’s Thesis aims to increase the diversity within the field. This children's book, Making Sense of Your Senses seeks to foster an early interest in the wonders of the brain by making neuroscience accessible to young readers through comprehensible text and entertaining illustrations.
ContributorsOsman, Yara (Author) / Ali, Souad (Thesis director) / Bristol, Rachel (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05