Matching Items (8)
Filtering by

Clear all filters

137424-Thumbnail Image.png
Description
Cocaine is a highly addictive psychostimulant that is widely used around the world. It is far more cost effective to curb this problem through treatment than by any other method as medicinal drug treatment is 15 times more effective than law enforcement at reducing the societal costs of cocaine use

Cocaine is a highly addictive psychostimulant that is widely used around the world. It is far more cost effective to curb this problem through treatment than by any other method as medicinal drug treatment is 15 times more effective than law enforcement at reducing the societal costs of cocaine use as determine by RAND corp. In a previous paper from our lab, it was found that via virally mediated introduction of additional 5-HT1B receptors into the nucleus accumbens there was a leftward shift in the cocaine intake dose-response curve in animals that were self-administering cocaine by pressing a lever. These findings suggest that 5-HT1B receptor action enhances the reinforcing effects of cocaine. However, when animals were given a 21-day period of prolonged abstinence and then tested for cocaine intake, it was determined that 5-HT1B receptor action had the opposite effect of decreasing cocaine intake presumably due to a decrease in the reinforcing effects of cocaine: [16]. The experiment in the current paper was devised to further test this finding via pharmacological means using the 5-HT1B agonist CP 94253 to increase stimulation of 5-HT1B receptors. Animals were trained to self-administer by pressing a lever on fixed ratio schedules of cocaine reinforcement given at 0.75 mg/kg and 0.075 mg/kg doses of cocaine. These doses allowed us to examine changes in self-administration on both the ascending and descending limbs of the inverted u-shaped cocaine dose-effect curve. Our results indicated that in animals given CP 94253 exhibited a decrease in responding on both the ascending and descending limbs of the dose response curve demonstrating a downward shift after prolonged abstinence. These exciting results suggest that the agonist decreases cocaine intake, and therefore, the agonist may be a useful treatment for cocaine dependence.
ContributorsYanamandra, Krishna Teja (Author) / Neisewander, Janet (Thesis director) / Goldstein, Elliott (Committee member) / Pentkowski, Nathan (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05
137535-Thumbnail Image.png
Description
There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as

There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as heart disease. Thus, in order to achieve a successful and clinically relevant long-term hormone therapy option, it is optimal to find an estrogen therapy regimen that is selective to its target tissue. Recently, phytoestrogens have been found to exert selective, beneficial effects on cognition and brain. For example, genistein and diadzein produce neuroprotective effects in cognitive brain regions (Zhao, Chen, & Diaz Brinton, 2002). The purpose of this study was threefold: 1) to examine the cognitive impact of phytoestrogens in young ovariectomized rats, 2) to replicate the dose effects found in the Luine study (Luine et al., 2006), while controlling for manufacturer differences, and 3) to assess if the rodent diet used in our laboratory has an estrogenic-like cognitive impact.The current findings suggest that, at least for object memory, diets containing varying amounts of phytoestrogens can alter cognition, with diets containing high amounts of phytoestrogens showing potential benefits to this type of memory.
ContributorsWhitton, Elizabeth Nicole (Author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
137015-Thumbnail Image.png
Description
Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine system, has been implicated in the incentive motivational and rewarding effects of cocaine. Our research suggests that the stimulation of 5-HT1BRs produces different effects at various time points in the addiction cycle. During maintenance of chronic cocaine administration, 5-HT1BR stimulation has a facilitative effect on the reinforcing properties of cocaine. However 5-HT1BR stimulation exhibits inhibitory effects on reinforcement during prolonged abstinence from cocaine. The aim of this study was to examine the possibility of a switch in the functional role of 5-HT1BRs in the locomotor effects of cocaine at different time points of chronic cocaine administration in mice. We found that the 5-HT1BR agonist CP 94,253 increased locomotor activity in mice tested one day after the last chronic cocaine administration session regardless of whether the chronic treatment was cocaine or saline and regardless of challenge injection (i.e., cocaine or saline). Yet after abstinence, CP 94,253 induced a decrease in locomotor activity in mice challenged with saline and attenuated cocaine-induced locomotion relative to cocaine challenge after vehicle pretreatment. These findings suggest that a switch in the functional role of 5-HT1BR is observed at different stages of the addiction cycle and further suggest that clinical applications of drugs acting on 5-HT1BR should consider these effects.
ContributorsBrunwasser, Samuel Joshua (Author) / Neisewander, Janet (Thesis director) / Pentkowski, Nathan (Committee member) / Der-Ghazarian, Taleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2014-05
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133108-Thumbnail Image.png
Description
Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function

Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function and time points are essential for therapeutic intervention. Research is beginning to identify gradual long-term neurodegenerative effects. With the advancement of brain imaging technology, we know that Wallerian degeneration has a significant negative impact on the white matter tracts throughout the brain (Johnson, Stewart, & Smith, 2013). If major tracts become injured like, the corpus callosum, then it can affect interhemispheric communication. Once myelin is damaged the axon becomes vulnerable, and the mechanisms of nerve recovery are not well known. Myelin sheath recovery has been studied in hopes to proliferate the oligodendrocytes that make up for the atrophied myelin. Neurotoxic chemicals released at activation of macrophages which hinders the brains ability to proliferate myelin protein needed for myelin differentiation adequately. In the central nervous system myelin has mechanisms to recover. Neurogenesis is a naturally occurring recovery mechanism seen after brain injury. Understanding the time points in which brain recovery occurs is important for treatment of diffuse injuries that cannot be identified through some imaging techniques. To better understand critical timepoints of natural recovery after brain injury can allow further investigation for early intervention to promote adequate recovery.
ContributorsLiptow, Kristen Ashley (Author) / Neisewander, Janet (Thesis director) / Law, L. Matthew (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135681-Thumbnail Image.png
Description
As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research

As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research was investigated in order to determine its effectiveness and uncover the neurochemical mechanisms that lead to positive manifestations such as improved memory recall, increased social affiliation, increased motivation, and decreased anxiety. Music therapy has been found to improve several aspects of memory recall. One proposed mechanism involves temporal entrainment, during which the melodic structures present in music provide a framework for chunking information. Although entrainment's role in the treatment of motor defects has been thoroughly studied, its role in treating cognitive disorders is still relatively new. Musicians have also been shown to demonstrate extensive plastic changes; therefore, it is hypothesized that non-musicians may also glean some benefits from engaging in music. Social affiliation has been found to increase due to increases in endogenous oxytocin. Oxytocin has also been shown to strengthen hippocampal spike transmission, a promising outcome for Alzheimer's patients. An increase in motivation has also been found to occur due to music's ability to tap into the reward center of the brain. Dopaminergic transmission between the VTA, NAc and higher functioning regions such as the OFC and hypothalamus has been revealed. Additionally, relaxing music decreases stress levels and modifies associated autonomic processes, i.e. heart rate, blood pressure, and respiratory rate. On the contrary, stimulating music has been found to initiate sympathetic nervous system activity. This is thought to occur by either a reflexive brainstem response or stimulus interpretation by the amygdala.
ContributorsFlores, Catalina Nicole (Author) / Redding, Kevin (Thesis director) / Hoffer, Julie (Committee member) / Neisewander, Janet (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Alzheimer’s disease (AD) is an irreversible brain disorder that plagues millions of people with no current cure. Current clinical research is slowly advancing to more definitive treatments in hopes of reducing the effects of progressive cognitive and behavioral decline, but none so far can slow AD’s onset. A brain area

Alzheimer’s disease (AD) is an irreversible brain disorder that plagues millions of people with no current cure. Current clinical research is slowly advancing to more definitive treatments in hopes of reducing the effects of progressive cognitive and behavioral decline, but none so far can slow AD’s onset. A brain area known as the nucleus incertus (NI) was recently discovered to potentially impact AD because of its connections to brain targets that degenerate; however, the NI’s role is unknown. This goal of this experiment was to use a transgenic mouse model (APP/PS1) that expresses AD pathology slowly as found in humans, and to test the mice in a variety of cognitive and anxiety assessments. Mice of both sexes and two different ages were used, with the first being young adult before AD pathology manifests (around 3-4 months old), and the second being around the cusp of when AD pathology manifests (late adult, 8-10 months old). The mice were tested in a variety of cognitive tasks that included the novel object recognition (NOR), Morris water maze (MWM), and the object placement (OP), with the latter being the focus of my thesis. Anxiety measures were taken from the open field (OF) and elevated plus maze (EPM) with the visible platform (VP) used to ensure mice could perform on the rigorous MWM task. In the OP, we found an age effect, where the older mice were less likely to explore the moved object during the OP compared to the younger mice; motor ability was unlikely to explain this effect. We did not find any significant age by genotype effects. These findings indicate that cognitive impairment only just started to affect the older cohort, since OP impairment was found on one measure and not another. Other measures currently being quantified will be helpful in understanding this data, and to see whether learning, memory, and anxiety are affected.

ContributorsDapon, Bianca (Author) / Conrad, Cheryl (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description
The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse

The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse travels between chambers that contain a conspecific and an object confined under a wire cup. However, this test is unable to quantify interactive behaviors between pairs of mice, which could not be tracked until the recent development of machine learning programs that track animal behavior. In this study, both the three-chamber test and a novel freely-moving social interaction test assessed social behavior in untreated male and female mice, as well as in male mice injected with hM3Dq (excitatory) DREADDs. In the three-chamber test, significant differences were found in the time spent (female: p < 0.05, male: p < 0.001) and distance traveled (female: p < 0.05, male: p < 0.001) in the chamber with the familiar conspecific, compared to the chamber with the object, for untreated male, untreated female, and mice with activated hM3Dq DREADDs. A social memory test was added, where the object was replaced with a novel mouse. Untreated male mice spent significantly more time (p < 0.05) and traveled a greater distance (p < 0.05) in the chamber with the novel mouse, while male mice with activated hM3Dq DREADDs spent more time (p<0.05) in the chamber with the familiar conspecific. Data from the freely-moving social interaction test was used to calculate freely-moving interactive behaviors between pairs of mice and interactions with an object. No sex differences were found, but mice with excited hM3Dq DREADDs engaged in significantly more anogenital sniffing (p < 0.05) and side-side contact (p < 0.05) behaviors. All these results indicate how machine learning allows for nuanced insights into how both sex and chemogenetic excitation impact social behavior in freely-moving mice.
ContributorsNelson, Megan (Author) / Verpeut, Jessica (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05