Matching Items (24)
Filtering by

Clear all filters

137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137535-Thumbnail Image.png
Description
There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as

There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as heart disease. Thus, in order to achieve a successful and clinically relevant long-term hormone therapy option, it is optimal to find an estrogen therapy regimen that is selective to its target tissue. Recently, phytoestrogens have been found to exert selective, beneficial effects on cognition and brain. For example, genistein and diadzein produce neuroprotective effects in cognitive brain regions (Zhao, Chen, & Diaz Brinton, 2002). The purpose of this study was threefold: 1) to examine the cognitive impact of phytoestrogens in young ovariectomized rats, 2) to replicate the dose effects found in the Luine study (Luine et al., 2006), while controlling for manufacturer differences, and 3) to assess if the rodent diet used in our laboratory has an estrogenic-like cognitive impact.The current findings suggest that, at least for object memory, diets containing varying amounts of phytoestrogens can alter cognition, with diets containing high amounts of phytoestrogens showing potential benefits to this type of memory.
ContributorsWhitton, Elizabeth Nicole (Author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
Description
Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain

Volume depletion can lead to migraines, dizziness, and significant decreases in a subject's ability to physically perform. A major cause of volume depletion is dehydration, or loss in fluids due to an imbalance in fluid intake to fluid excretion. Because proper levels of hydration are necessary in order to maintain both short and long term health, the ability to monitor hydration levels is growing in clinical demand. Although devices capable of monitoring hydration level exist, these devices are expensive, invasive, or inaccurate and do not offer a continuous mode of measurement. The ideal hydration monitor for consumer use needs to be characterized by its portability, affordability, and accuracy. Also, this device would need to be noninvasive and offer continuous hydration monitoring in order to accurately assess fluctuations in hydration data throughout a specified time period. One particular method for hydration monitoring that fits the majority of these criteria is known as bioelectric impedance analysis (BIA). Although current devices using BIA do not provide acceptable levels of accuracy, portability, or continuity in data collection, BIA could potentially be modified to fit many, if not all, desired customer specifications. The analysis presented here assesses the viability of using BIA as a new standard in hydration level measurement. The analysis uses data collected from 22 subjects using an existing device that employs BIA. A regression derived for estimating TBW based on the parameters of age, weight, height, sex, and impedance is presented. Using impedance data collected for each subject, a regression was also derived for estimating impedance based on the factors of age, weight, height, and sex. The derived regression was then used to calculate a new impedance value for each subject, and these new impedance values were used to estimate TBW. Through a paired-t test between the TBW values derived by using the direct measurements versus the calculated measurements of impedance, the two samples were found to be comparable. Considerations for BIA as a noninvasive measurement of hydration are discussed.
ContributorsTenorio, Jorge Antonio (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
132519-Thumbnail Image.png
Description
Abstract: The delivery of a drug or gene payload inside an individual neuron has been highly sought after and studied as a means of treating a large variety of neurological diseases and disorders such as cancer and Alzheimer’s. Current technology for these applications remains imperfect particularly with respect to

Abstract: The delivery of a drug or gene payload inside an individual neuron has been highly sought after and studied as a means of treating a large variety of neurological diseases and disorders such as cancer and Alzheimer’s. Current technology for these applications remains imperfect particularly with respect to matters of precision and cell viability. Thus, the use of MEMS (micro electro mechanical systems) based systems have become more prevalent in order to conduct these processes with higher precision and automation. Penetrating these specific cells while also maintaining their structural integrity during the process, remain as two major hurdles still being explored today. Electrical stimulation has been used to drive the delivery of a payload at the microscale but to do so with a voltage that keeps the neuron viable is imperative. In order to find a means for optimizing the voltage and ejection of the payload while maintaining cell viability, the goal of this project is to explore the use of pulsed waveforms for driving the delivery. In doing so, lower to moderate voltage amplitudes may potentially be used while also avoiding hydrolysis of the cell. This study was done by ejecting dye dextran from glass micropipettes with an agar and artificial seawater well using both DC and pulsed waveforms. Successful ejection of the payload was achieved and confirmed using fluorescent microscopy. While the methods used for this voltage based delivery require further optimization, the successful ejection utilizing pulsed voltages suggest that this may lead to an improved technique for MEMS based delivery of payloads into single cells in the future.
ContributorsStamm, Steven Jeffrey (Author) / Muthuswamy, Jitendran (Thesis director) / Sridharan, Arati (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133734-Thumbnail Image.png
Description
Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment

Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment of and (b) correlated with the white-matter structure of the executive control network, particularly related to the dorsolateral prefrontal cortex (dlPFC). By using long-duration musical stimuli, we were able to track the initial biasing, subsequent perception, and ultimate evaluation of the stimuli, examining the full evolution of these biases over time. Our findings confirm the persistence of confirmation bias effects even when ample opportunity exists to gather information about true stimulus quality, and underline the importance of executive control in reducing bias.
ContributorsAydogan, Goekhan (Co-author, Committee member) / Flaig, Nicole (Co-author) / Larg, Edward W. (Co-author) / Margulis, Elizabeth Hellmuth (Co-author) / McClure, Samuel (Co-author, Thesis director) / Nagishetty Ravi, Srekar Krishna (Co-author) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134795-Thumbnail Image.png
Description
Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether

Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether dendritic restructuring in CA3 neurons leads to region-specific changes in the dendritic complexity of CA1 neurons. Adult male Sprague-Dawley rats were restrained (wire mesh, 6h/d/21d) and brains were removed soon after restraint ended (Str-Imm) or after a 21d post-stress recovery period (Str-Rec). In addition, BDNF downregulation targeting the CA3 region prevents enhancement in dendritic complexity following recovery in chronically stressed rats, providing robust conditions to investigate the CA3-CA1 relationship. Consequently, rats were infused into the CA3 area with either an AAV vector with a coding sequence against BDNF (shRNA) or a sequence with no known mRNA complements (Scr). Apical and basal dendritic complexity of CA3 and CA1 was quantified by counting total dendritic bifurcations and dendritic intersections using the Sholl analysis (20 µm distances from soma). Please note that the quantification of the CA3 dendritic arbors was not part of this thesis project. The outcome of that investigation revealed that apical CA3 dendritic retraction was found in Str-Imm-Scr and Str-Rec-shRNA. For the CA1 apical area, gross dendritic bifurcation differences were not detected, but the Sholl quantification revealed regionally-enhanced dendritic complexity that varied by distance from the soma at the distal apical dendrites (Str-Imm-Scr) and proximal basal dendrites (Str-Rec-shRNA). For the latter, significant increases in basal branch points were detected with total branch point quantification method. Moreover, a correlation using all groups revealed a significant inverse relationship between CA3 apical dendritic complexity and CA1 basal dendritic complexity. The results demonstrate that chronic stress-induced CA3 apical dendritic retraction may relate to region-specific changes in CA1 dendritic complexity. The inability of past studies to detect changes in CA1 dendritic complexity may be due to the shortcoming of gross dendritic arbor measures in accounting for subtle region-specific alterations. To address this, the current study included a cohort with BDNF downregulated in the CA3 region. Overall, this suggests that decreased levels of BDNF in the hippocampus provide robust conditions in which changes to CA1 dendritic complexity can be detected.
ContributorsDaas, Eshaan Jatin (Author) / Conrad, Cheryl (Thesis director) / Orchinik, Miles (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12