Matching Items (6)
Filtering by

Clear all filters

131527-Thumbnail Image.png
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136475-Thumbnail Image.png
Description
Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested

Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested through a sensitivity analysis. Doing so also provides insight about how to construct more effective feature vectors.
ContributorsMa, Owen (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
137100-Thumbnail Image.png
Description
Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.
ContributorsCrider, Lauren Nicole (Author) / Cochran, Douglas (Thesis director) / Renaut, Rosemary (Committee member) / Kosut, Oliver (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
147844-Thumbnail Image.png
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165711-Thumbnail Image.png
Description
The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the

The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the visual cortex of the brain). However, using the pRF model is very time consuming. Past research has focused on the creation of Convolutional Neural Networks (CNN) to mimic the pRF model in a fraction of the time, and they have worked well under highly controlled conditions. However, these models have not been thoroughly tested on real human data. This thesis focused on adapting one of these CNNs to accurately predict the retinotopy of a real human subject using a dataset from the Human Connectome Project. The results show promise towards creating a fully functioning CNN, but they also expose new challenges that must be overcome before the model could be used to predict the retinotopy of new human subjects.
ContributorsBurgard, Braeden (Author) / Wang, Yalin (Thesis director) / Ta, Duyan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05