Matching Items (7)
Filtering by

Clear all filters

151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
161590-Thumbnail Image.png
Description
In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses.

In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses. Multiple optical calculation methods were developed for the accurate determination of the optical constants from the reflectance. The deduced optical constants were used for optical designs, such as high-reflectivity coatings, and Fabry-Perot bandpass interference filters. Three filters were designed for use at 157 nm, 212 nm, and 248 nm wavelengths, based on multilayer structures consisting of SiO2, Al2O3, HfO2, and AlF3. A thorough error analysis was made to quantify the non-idealities of the optical performance for the designed filters. Far UV spectroscopy was also applied to analyze material mixtures, such as AlF3/Al and h-BN/c-BN mixtures. Using far UV spectroscopy, different phases in the composite can be distinguished, and the volume concentration of each constituent can be determined. A middle UV reflective coating based on A2O3 and AlF3 was fabricated and characterized. The reflective coating has a smooth surface (?? < 1 nm), and a peak reflectance of 25 – 30 % at a wavelength of 196 nm. The peak reflectance deviated from the design, and an analysis of the AlF3 layer prepared by plasma-enhanced atomic layer deposition (PEALD) indicated the presence of Al-rich clusters, which were associated with the UV absorption. Complementary techniques, such as spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, were used to verify the results from far UV spectroscopy. In conclusion, this Dissertation demonstrated the use of in-situ far UV spectroscopy to investigate the optical properties of thin films at short wavelengths. This work extends the application of far UV spectroscopy to ultrawide bandgap semiconductors and insulators. This work supports a path forward for far UV optical filters and devices. Various errors have been discussed with solutions proposed for future research of methods and materials for UV optics.
ContributorsHuang, Zhiyu (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Menéndez, Jose (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2021
168405-Thumbnail Image.png
Description
Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection

Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection and control. However, polarization measurement and manipulating devices with high efficiency and accuracy in the mid-infrared (MIR) range remain elusive. This dissertation presented design concepts and experimental demonstrations of full-Stokes parameters detection and polarization generation devices based on chip-integrated plasmonic metasurfaces with high performance and record efficiency. One of the significant challenges for full-Stokes polarization detection is to achieve high-performance circular polarization (CP) filters. The first design presented in this dissertation is based on the direct integration of plasmonic quarter-wave plate (QWP) onto gold nanowire gratings. It is featured with the subwavelength thickness (~500nm) and extinction ratio around 16. The second design is based on the anisotropic thin-film interference between two vertically integrated anisotropic plasmonic metasurfaces. It provides record high efficiency (around 90%) and extinction ratio (>180). These plasmonic CP filters can be used for circular, elliptical, and linear polarization generation at different wavelengths. The maximum degree of circular polarization (DOCP) measured from the sample achieves 0.99998. The proposed CP filters were integrated with nanograting-based linear polarization (LP) filters on the same chip for single-shot polarization detection. Full-Stokes measurements were experimentally demonstrated with high accuracy at the single wavelength using the direct subtraction method and over a broad wavelength range from 3.5 to 4.5mm using the Mueller matrix method. This design concept was later expanded to a pixelized array of polarization filters. A full-Stokes imaging system was experimentally demonstrated based on integrating a metasurface with pixelized polarization filters arrays and an MIR camera.
ContributorsBai, Jing (Author) / Yao, Yu (Thesis advisor) / Balanis, Constantine A. (Committee member) / Wang, Liping (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2021
154615-Thumbnail Image.png
Description
Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D

Current organic light emitting diodes (OLEDs) suffer from the low light extraction efficiency. In this thesis, novel OLED structures including photonic crystal, Fabry-Perot resonance cavity and hyperbolic metamaterials were numerically simulated and theoretically investigated. Finite-difference time-domain (FDTD) method was employed to numerically simulate the light extraction efficiency of various 3D OLED structures. With photonic crystal structures, a maximum of 30% extraction efficiency is achieved. A higher external quantum efficiency of 35% is derived after applying Fabry-Perot resonance cavity into OLEDs. Furthermore, different factors such as material properties, layer thicknesses and dipole polarizations and locations have been studied. Moreover, an upper limit for the light extraction efficiency of 80% is reached theoretically with perfect reflector and single dipole polarization and location. To elucidate the physical mechanism, transfer matrix method is introduced to calculate the spectral-hemispherical reflectance of the multilayer OLED structures. In addition, an attempt of using hyperbolic metamaterial in OLED has been made and resulted in 27% external quantum efficiency, due to the similar mechanism of wave interference as Fabry-Perot structure. The simulation and optimization methods and findings would facilitate the design of next generation, high-efficiency OLED devices.
ContributorsSu, Hang (Author) / Wang, Liping (Thesis advisor) / Li, Jian (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2016
154494-Thumbnail Image.png
Description
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and

III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
ContributorsChen, Hong (Author) / Zhao, Yuji (Thesis advisor) / Yao, Yu (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
155397-Thumbnail Image.png
Description
The study of subwavelength behavior of light and nanoscale lasing has broad

potential applications in various forms of computation i.e. optical and quantum, as well as

in energy engineering. Although this field has been under active research, there has been

little work done on describing the behaviors of threshold and

The study of subwavelength behavior of light and nanoscale lasing has broad

potential applications in various forms of computation i.e. optical and quantum, as well as

in energy engineering. Although this field has been under active research, there has been

little work done on describing the behaviors of threshold and saturation. Particularly, how

the gain-molecule behavior affects the lasing behavior has yet to be investigated.

In this work, the interaction of surface-plasmon-polaritons (SPPs) and molecules is

observed in lasing. Various phenomenologies are observed related to the appearance of the

threshold and saturation regions. The lasing profile, as a visual delimiter of lasing threshold

and saturation, is introduced and used to study various parametrical dependencies of lasing,

including the number-density of molecules, the molecular thickness and the frequency

detuning between the molecular transition frequency and the SPP resonant frequency. The

molecular population distributions are studied in terminal and dynamical methods and are

found to contain unexpected and theoretically challenging properties. Using an average

dynamical analysis, the simulated spontaneous emission cascade can be clearly seen.

Finally, theoretical derivations of simple 1D strands of dipoles are presented in both

the exact and mean-field approximation, within the density matrix formalism. Some

preliminary findings are presented, detailing the observed behaviors of some simple

systems.
ContributorsBrewer, Andre J (Author) / Sukharev, Maxim (Thesis advisor) / Rivera, Daniel E (Thesis advisor) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2017
158511-Thumbnail Image.png
Description
Photonic integrated circuit (PIC) in the visible spectrum opens up new opportunities for frequency metrology, neurophotonics, and quantum technologies. Group III nitride (III-N) compound semiconductor is a new emerging material platform for PIC in visible spectrum. The ultra-wide bandgap of aluminum nitride (AlN) allows broadband transparency. The high quantum efficiency

Photonic integrated circuit (PIC) in the visible spectrum opens up new opportunities for frequency metrology, neurophotonics, and quantum technologies. Group III nitride (III-N) compound semiconductor is a new emerging material platform for PIC in visible spectrum. The ultra-wide bandgap of aluminum nitride (AlN) allows broadband transparency. The high quantum efficiency of indium gallium nitride (InGaN) quantum well is the major enabler for solid-state lighting and provides the opportunities for active photonic integration. Additionally, the two-dimensional electron gas induced by spontaneous and polarization charges within III-N materials exhibit large electron mobility, which is promising for the development of high frequency transistors. Moreover, the noncentrosymmetric crystalline structure gives nonzero second order susceptibility, beneficial for the application of second harmonic generation and entangled photon generation in nonlinear and quantum optical technologies. Despite the promising features of III-N materials, the investigations on the III-N based PICs are still primitive, mainly due to the difficulties in material growth and the lack of knowledge on fundamental material parameters. In this work, firstly, the fundamental nonlinear optical properties of III-N materials will be characterized. Then, the fabrication process flow of III-N materials will be established. Thirdly, the waveguide performance will be theoretically and experimentally evaluated. At last, the supercontinuum generation from visible to infrared will be demonstrated by utilizing soliton dynamics in high order guided modes. The outcome from this work paves the way towards fully integrated optical comb in UV and visible spectrum.
ContributorsChen, Hong (Author) / Zhao, Yuji (Thesis advisor) / Yao, Yu (Committee member) / Wang, Liping (Committee member) / Ning, Cun-Zheng (Committee member) / Arizona State University (Publisher)
Created2020