Matching Items (3)
Filtering by

Clear all filters

151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
154201-Thumbnail Image.png
Description
Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces

Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces were observed to be atomically clean with very few defects.

Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was measured using EELS, and decreased by ~1.0 eV as Ti4+ was substituted by Al3+. The damping of O-K EELS peaks confirmed the rise in oxygen vacancies. For Co-substituted STO films grown on Si, the EDS and EELS spectra across samples showed Co doping was quite random. The substitution of Ti4+ with Co3+ or Co2+ created associated oxygen vacancies for charge balance. Presence of oxygen vacancies was also confirmed by shift of Ti-L EELS peaks towards lower energy by ~0.4 eV. The crystal-field strength decreased by ~0.6 eV as Ti4+ was partially substituted by Co3+ or Co2+.

Spinel Co3O4 thin films grown on MgAl2O4 (110) were observed to have excellent crystalline quality. The structure of the Co3O4/MgAl2O4 interface was determined using HRTEM and image simulations. It was found that MgAl2O4 substrate is terminated with Al and oxygen. Stacking faults and associated strain fields in spinel Co3O4 were found along [111], [001], and [113] using Geometrical Phase Analysis.

NbO2 films on STO (111) were observed to be tetragonal with lattice parameter of 13.8 Å and NbO films on LSAT (111) were observed to be cubic with lattice parameter of 4.26 Å. HRTEM showed formation of high quality NbOx films and excellent coherent interface. HRTEM of SrAl4 on LAO (001) confirmed an island growth mode. The SrAl4 islands were highly crystalline with excellent epitaxial registry with LAO. By comparing HRTEM images with image simulations, the interface structure was determined to consist of Sr-terminated SrAl4 (001) on AlO2-terminated LAO (001).
ContributorsDhamdhere, Ajit (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Chamberlin, Ralph (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2015
161590-Thumbnail Image.png
Description
In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses.

In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses. Multiple optical calculation methods were developed for the accurate determination of the optical constants from the reflectance. The deduced optical constants were used for optical designs, such as high-reflectivity coatings, and Fabry-Perot bandpass interference filters. Three filters were designed for use at 157 nm, 212 nm, and 248 nm wavelengths, based on multilayer structures consisting of SiO2, Al2O3, HfO2, and AlF3. A thorough error analysis was made to quantify the non-idealities of the optical performance for the designed filters. Far UV spectroscopy was also applied to analyze material mixtures, such as AlF3/Al and h-BN/c-BN mixtures. Using far UV spectroscopy, different phases in the composite can be distinguished, and the volume concentration of each constituent can be determined. A middle UV reflective coating based on A2O3 and AlF3 was fabricated and characterized. The reflective coating has a smooth surface (?? < 1 nm), and a peak reflectance of 25 – 30 % at a wavelength of 196 nm. The peak reflectance deviated from the design, and an analysis of the AlF3 layer prepared by plasma-enhanced atomic layer deposition (PEALD) indicated the presence of Al-rich clusters, which were associated with the UV absorption. Complementary techniques, such as spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, were used to verify the results from far UV spectroscopy. In conclusion, this Dissertation demonstrated the use of in-situ far UV spectroscopy to investigate the optical properties of thin films at short wavelengths. This work extends the application of far UV spectroscopy to ultrawide bandgap semiconductors and insulators. This work supports a path forward for far UV optical filters and devices. Various errors have been discussed with solutions proposed for future research of methods and materials for UV optics.
ContributorsHuang, Zhiyu (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Menéndez, Jose (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2021