Matching Items (14)
Filtering by

Clear all filters

149937-Thumbnail Image.png
Description
There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon

There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order.
ContributorsSochacki, John (Author) / Thornton, Trevor J (Thesis advisor) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
149962-Thumbnail Image.png
Description
In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.
ContributorsJoshi, Punarvasu (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Thesis advisor) / Spanias, Andreas (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
151804-Thumbnail Image.png
Description
The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. The transition frequency of the device is demonstrated to be 45GHz, which makes the MESFET suitable for applications in high power RF power amplifier designs. Also, high breakdown voltage and low turn-on resistance make it the ideal choice for switches in the switching regulator designs. One of the anticipated applications of the MESFET is for the pass device for a low dropout linear regulator. Conventional NMOS and PMOS linear regulators suffer from high dropout voltage, low bandwidth and poor stability issues. In contrast, the N-MESFET pass transistor can provide an ultra-low dropout voltage and high bandwidth without the need for an external compensation capacitor to ensure stability. In this thesis, the design theory and problems of the conventional linear regulators are discussed. N-MESFET low dropout regulators are evaluated and characterized. The error amplifier used a folded cascode architecture with gain boosting. The source follower topology is utilized as the buffer to sink the gate leakage current from the MESFET. A shunt-feedback transistor is added to reduce the output impedance and provide the current adaptively. Measurement results show that the dropout voltage is less than 150 mV for a 1A load current at 1.8V output. Radiation measurements were done for discrete MESFET and fully integrated LDO regulators, which demonstrate their radiation tolerance ability for aerospace applications.
ContributorsChen, Bo (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
149494-Thumbnail Image.png
Description
The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This has been proved at five different commercial foundries on technologies ranging from 0.5 to 0.15 μm. Another critical issue facing CMOS processes on insulated substrates is the scaling of the thin silicon channel. Consequently, the future direction of SOI/SOS CMOS transistors may trend away from partially depleted (PD) transistors and towards fully depleted (FD) devices. FD-CMOS are already being implemented in multiple applications due to their very low power capability. Since the FD-CMOS market only figures to grow, it is appropriate that MESFETs also be developed for these processes. The beginning of this thesis will focus on the device aspects of both PD and FD-MESFETs including their layout structure, DC and RF characteristics, and breakdown voltage. The second half will then shift the focus towards implementing both types of MESFETs in an analog circuit application. Aside from their high breakdown ability, MESFETs also feature depletion mode operation, easy to adjust but well controlled threshold voltages, and fT's up to 45 GHz. Those unique characteristics can allow certain designs that were previously difficult to implement or prohibitively expensive using conventional technologies to now be achieved. One such application which benefits is low dropout regulators (LDO). By utilizing an n-channel MESFET as the pass transistor, a LDO featuring very low dropout voltage, fast transient response, and stable operation can be achieved without an external capacitance. With the focus of this thesis being MESFET based LDOs, the device discussion will be mostly tailored towards optimally designing MESFETs for this particular application.
ContributorsLepkowski, William (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2010
149398-Thumbnail Image.png
Description
Silicon Carbide (SiC) junction field effect transistors (JFETs) are ideal for switching high current, high voltage loads in high temperature environments. These devices require external drive circuits to generate pulse width modulated (PWM) signals switching from 0V to approximately 10V. Advanced CMOS microcontrollers are ideal for generating the PWM signals

Silicon Carbide (SiC) junction field effect transistors (JFETs) are ideal for switching high current, high voltage loads in high temperature environments. These devices require external drive circuits to generate pulse width modulated (PWM) signals switching from 0V to approximately 10V. Advanced CMOS microcontrollers are ideal for generating the PWM signals but are limited in output voltage due to their low breakdown voltage within the CMOS drive circuits. As a result, an intermediate buffer stage is required between the CMOS circuitry and the JFET. In this thesis, a discrete silicon-on-insulator (SOI) metal semiconductor field effect transistor (MESFET) was used to drive the gate of a SiC power JFET switching a 120V RMS AC supply into a 30Ω load. The wide operating temperature range and high breakdown voltage of up to 50V make the SOI MESFET ideal for power electronics in extreme environments. Characteristic curves for the MESFET were measured up to 250&degC.; To drive the JFET, the MESFET was DC biased and then driven by a 1.2V square wave PWM signal to switch the JFET gate from 0 to 10V at frequencies up to 20kHz. For simplicity, the 1.2V PWM square wave signal was provided by a 555 timer. The JFET gate drive circuit was measured at high temperatures up to 235&degC.; The circuit operated well at the high temperatures without any damage to the SOI MESFET or SiC JFET. The drive current of the JFET was limited by the duty cycle range of the 555 timer used. The SiC JFET drain current decreased with increased temperature. Due to the easy integration of MESFETs into SOI CMOS processes, MESFETs can be fabricated alongside MOSFETs without any changes in the process flow. This thesis demonstrates the feasibility of integrating a MESFET with CMOS PWM circuitry for a completely integrated SiC driver thus eliminating the need for the intermediate buffer stage.
ContributorsSummers, Nicholas, M.S (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
171597-Thumbnail Image.png
Description
Patterning technologies for micro/nano-structures have been essentially used in a variety of discipline research areas, including electronics, optics, material science, and biotechnology. Therefore their importance has dramatically increased over the past decades. This dissertation presents various advanced patterning processes utilizing cross-discipline technologies, e.g., photochemical deposition, transfer printing (TP), and nanoimprint

Patterning technologies for micro/nano-structures have been essentially used in a variety of discipline research areas, including electronics, optics, material science, and biotechnology. Therefore their importance has dramatically increased over the past decades. This dissertation presents various advanced patterning processes utilizing cross-discipline technologies, e.g., photochemical deposition, transfer printing (TP), and nanoimprint lithography (NIL), to demonstrate inexpensive, high throughput, and scalable manufacturing for advanced optical applications. The polymer-assisted photochemical deposition (PPD) method is employed in the form of additive manufacturing (AM) to print ultra-thin (< 5 nm) and continuous film in micro-scaled (> 6.5 μm) resolution. The PPD film acts as a lossy material in the Fabry-Pérot cavity structures and generates vivid colored images with a micro-scaled resolution by inducing large modulation of reflectance. This PPD-based structural color printing performs without photolithography and vacuum deposition in ambient and room-temperature conditions, which enables an accessible and inexpensive process (Chapter 1). In the TP process, germanium (Ge) is used as the nucleation layer of noble metallic thin films to prevent structural distortion and improve surface morphology. The developed Ge-assisted transfer printing (GTP) demonstrates its feasibility transferring sub-100 nm features with up to 50 nm thickness in a centimeter scale. The GTP is also capable of transferring arbitrary metallic nano-apertures with minimal pattern distortion, providing relatively less expensive, simpler, and scalable manufacturing (Chapter 2). NIL is employed to fabricate the double-layered chiral metasurface for polarimetric imaging applications. The developed NIL process provides multi-functionalities with a single NIL, i.e., spacing layer, planarized surface, and formation of dielectric gratings, respectively, which significantly reduces fabrication processing time and potential cost by eliminating several steps in the conventional fabrication process. During the integration of two metasurfaces, the Moiré fringe based alignment method is employed to accomplish the alignment accuracy of less than 200 nm in both x- and y-directions, which is superior to conventional photolithography. The dramatically improved optical performance, e.g., highly improved circular polarization extinction ratio (CPER), is also achieved with the developed NIL process (Chapter 3).
ContributorsChoi, Shinhyuk (Author) / Wang, Chao (Thesis advisor) / Yu, Hongbin (Committee member) / Holman, Zachary (Committee member) / Hwa, Yoon (Committee member) / Arizona State University (Publisher)
Created2023
168524-Thumbnail Image.png
Description
Few-layer black phosphorous (FLBP) is one of the most important two-dimensional (2D) materials due to its strongly layer-dependent quantized bandstructure, which leads to wavelength-tunable optical and electrical properties. This thesis focuses on the preparation of stable, high-quality FLBP, the characterization of its optical properties, and device applications.Part I presents an

Few-layer black phosphorous (FLBP) is one of the most important two-dimensional (2D) materials due to its strongly layer-dependent quantized bandstructure, which leads to wavelength-tunable optical and electrical properties. This thesis focuses on the preparation of stable, high-quality FLBP, the characterization of its optical properties, and device applications.Part I presents an approach to preparing high-quality, stable FLBP samples by combining O2 plasma etching, boron nitride (BN) sandwiching, and subsequent rapid thermal annealing (RTA). Such a strategy has successfully produced FLBP samples with a record-long lifetime, with 80% of photoluminescence (PL) intensity remaining after 7 months. The improved material quality of FLBP allows the establishment of a more definitive relationship between the layer number and PL energies. Part II presents the study of oxygen incorporation in FLBP. The natural oxidation formed in the air environment is dominated by the formation of interstitial oxygen and dangling oxygen. By the real-time PL and Raman spectroscopy, it is found that continuous laser excitation breaks the bonds of interstitial oxygen, and free oxygen atoms can diffuse around or form dangling oxygen under low heat. RTA at 450 °C can turn the interstitial oxygen into dangling oxygen more thoroughly. Such oxygen-containing samples show similar optical properties to the pristine BP samples. The bandgap of such FLBP samples increases with the concentration of the incorporated oxygen. Part III deals with the investigation of emission natures of the prepared samples. The power- and temperature-dependent measurements demonstrate that PL emissions are dominated by excitons and trions, with a combined percentage larger than 80% at room temperature. Such measurements allow the determination of trion and exciton binding energies of 2-, 3-, and 4-layer BP, with values around 33, 23, 15 meV for trions and 297, 276, 179 meV for excitons at 77K, respectively. Part IV presents the initial exploration of device applications of such FLBP samples. The coupling between photonic crystal cavity (PCC) modes and FLBP's emission is realized by integrating the prepared sandwich structure onto 2D PCC. Electroluminescence has also been achieved by integrating such materials onto interdigital electrodes driven by alternating electric fields.
ContributorsLi, Dongying (Author) / Ning, Cun-Zheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Lai, Ying-Cheng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2022
156786-Thumbnail Image.png
Description
Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and

Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and throughput.

This dissertation presents several works on developing novel plasmonic based techniques for protein detections on the last two aspects to extend the application field. A fast electrochemically controlled plasmonic detection technique is first developed with the capability of monitoring electrochemical signal with nanosecond response time. The study reveals that the conformational gating of electron transfer in a redox protein (cytochrome c) takes place over a broad range of time scales (sub-µs to ms). The second platform integrates ultra-low volume piezoelectric liquid dispensing and plasmonic imaging detection to monitor different protein binding processes simultaneously with low sample cost. Experiment demonstrates the system can observe binding kinetics in 10×10 microarray of 6 nL droplet, with variations of kinetic rate constants among spots less than ±5%. A focused plasmonic imaging system with bi-cell algorithm is also proposed for spatial resolution enhancement. The two operation modes, scanning mode and focus mode, can be applied for different purposes. Measurement of bacterial aggregation demonstrates the higher spatial resolution. Detections of polystyrene beads binding and 50 nm gold nanoparticles oscillation show a high signal to noise ratio of the system.

The real properties of protein rely on its dynamic personalities. The above works shed light upon fast and high throughput detection of protein kinetics, and enable more applications for plasmonic imaging techniques. It is anticipated that such methods will help to invoke a new surge to unveil the mysteries of biological activities and chemical process.
ContributorsWang, Yan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
157593-Thumbnail Image.png
Description
Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air

Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air pollution exposure is of great importance for the management and prevention of asthma attack. Hence small form factor, real time, accurate, sensitive and easy to use portable devices for environmental monitoring are of great value.

Three novel image-based methods for quantitative real time environmental monitoring were introduced and the sensing principle, sensor performances were evaluated through simulation and field tests. The first sensing principle uses surface plasmon resonance (SPR) image and home-made molecular sieve (MS) column to realize real time chemical separation and detection. SPR is sensitive and non-specific, which makes it a desirable optical method for sensitive biological and chemical sensing, the miniaturized MS column provides small area footprint and makes it possible for SPR to record images of the whole column area. The innovative and system level integration approach provide a new way for simultaneous chemical separation and detection. The second sensor uses scattered laser light, Complementary metal-oxide-semiconductor (CMOS) imager and image processing to realize real-time particulate matter (PM) sensing. Complex but low latency algorithm was developed to obtain real time information for PM including PM number, size and size distribution. The third sensor uses gradient based colorimetric sensor, absorbance light signal and image processing to realize real-time Ozone sensing and achieved high sensitivity and substantially longer lifetime compared to conventional colorimetric sensors. The platform provides potential for multi-analyte integration and large-scale consumer use as wearable device.

The three projects provide novel, state-of-the-art and sensitive solutions for environmental and personal exposure monitoring. Moreover, the sensing platforms also provide tools for clinicians and epidemiologists to conduct large scale clinical studies on the adverse health effects of pollutants on various kinds of diseases.
ContributorsDu, Zijian (Author) / Tao, Nongjian (Thesis advisor) / Goryll, Michael (Committee member) / Herckes, Pierre (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2019