Matching Items (6)
Filtering by

Clear all filters

152694-Thumbnail Image.png
Description
In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention

In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention strategies, or employed in the identification and evaluation of control or mitigation measures. The research work in this dissertation focuses on: The comparison and assessment of the role of exponentially distributed waiting times versus the use of generalized non-exponential parametric distributed waiting times of infectious periods on the quantitative and qualitative outcomes generated by Susceptible-Infectious-Removed (SIR) models. Specifically, Gamma distributed infectious periods are considered in the three research projects developed following the applications found in (Bailey 1964, Anderson 1980, Wearing 2005, Feng 2007, Feng 2007, Yan 2008, lloyd 2009, Vergu 2010). i) The first project focuses on the influence of input model parameters, such as the transmission rate, mean and variance of Gamma distributed infectious periods, on disease prevalence, the peak epidemic size and its timing, final epidemic size, epidemic duration and basic reproduction number. Global uncertainty and sensitivity analyses are carried out using a deterministic Susceptible-Infectious-Recovered (SIR) model. The quantitative effect and qualitative relation between input model parameters and outcome variables are established using Latin Hypercube Sampling (LHS) and Partial rank correlation coefficient (PRCC) and Spearman rank correlation coefficient (RCC) sensitivity indices. We learnt that: For relatively low (R0 close to one) to high (mean of R0 equals 15) transmissibility, the variance of the Gamma distribution for the infectious period, input parameter of the deterministic age-of-infection SIR model, is key (statistically significant) on the predictability of the epidemiological variables such as the epidemic duration and the peak size and timing of the prevalence of infectious individuals and therefore, for the predictability these variables, it is preferable to utilize a nonlinear system of Volterra integral equations, rather than a nonlinear system of ordinary differential equations. The predictability of epidemiological variables such as the final epidemic size and the basic reproduction number are unaffected by (or independent of) the variance of the Gamma distribution for the infectious period and therefore for the choice on which type of nonlinear system for the description of the SIR model (VIE's or ODE's) is irrelevant. Although, for practical proposes, with the aim of lowering the complexity and number operations in the numerical methods, a nonlinear system of ordinary differential equations is preferred. The main contribution lies in the development of a model based decision-tool that helps determine when SIR models given in terms of Volterra integral equations are equivalent or better suited than SIR models that only consider exponentially distributed infectious periods. ii) The second project addresses the question of whether or not there is sufficient evidence to conclude that two empirical distributions for a single epidemiological outcome, one generated using a stochastic SIR model under exponentially distributed infectious periods and the other under the non-exponentially distributed infectious period, are statistically dissimilar. The stochastic formulations are modeled via a continuous time Markov chain model. The statistical hypothesis test is conducted using the non-parametric Kolmogorov-Smirnov test. We found evidence that shows that for low to moderate transmissibility, all empirical distribution pairs (generated from exponential and non-exponential distributions) for each of the epidemiological quantities considered are statistically dissimilar. The research in this project helps determine whether the weakening exponential distribution assumption must be considered in the estimation of probability of events defined from the empirical distribution of specific random variables. iii) The third project involves the assessment of the effect of exponentially distributed infectious periods on estimates of input parameter and the associated outcome variable predictions. Quantities unaffected by the use of exponentially distributed infectious period within low transmissibility scenarios include, the prevalence peak time, final epidemic size, epidemic duration and basic reproduction number and for high transmissibility scenarios only the prevalence peak time and final epidemic size. An application designed to determine from incidence data whether there is sufficient statistical evidence to conclude that the infectious period distribution should not be modeled by an exponential distribution is developed. A method for estimating explicitly specified non-exponential parametric probability density functions for the infectious period from epidemiological data is developed. The methodologies presented in this dissertation may be applicable to models where waiting times are used to model transitions between stages, a process that is common in the study of life-history dynamics of many ecological systems.
ContributorsMorales Butler, Emmanuel J (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Aparicio, Juan P (Thesis advisor) / Camacho, Erika T (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135858-Thumbnail Image.png
Description
The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic

The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic features of the resulting jump function approximation depends on these lters, known as concentration factors. Recent research showed that that these concentration factors could be designed using aexible iterative framework, improving upon the overall accuracy and robustness of the method, especially in the case where some Fourier data are untrustworthy or altogether missing. Hypothesis testing methods were used to determine how well the original concentration factor method could locate edges using noisy Fourier data. This thesis combines the iterative design aspect of concentration factor design and hypothesis testing by presenting a new algorithm that incorporates multiple concentration factors into one statistical test, which proves more ective at determining jump discontinuities than the previous HT methods. This thesis also examines how the quantity and location of Fourier data act the accuracy of HT methods. Numerical examples are provided.
ContributorsLubold, Shane Michael (Author) / Gelb, Anne (Thesis director) / Cochran, Doug (Committee member) / Viswanathan, Aditya (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134418-Thumbnail Image.png
Description
We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and

We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and build this index using data from the 2014 American Community Survey. Finally, we provide context for further use and development of the index and describe an example application of the index in practice.
ContributorsTheisen, Ryan (Co-author) / Helms, Tyler (Co-author) / Lewis, Paul (Thesis director) / Reiser, Mark (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Career information for degrees in statistics and data science according to frequently asked questions and twelve major categories of interest: arts, business, education, engineering, environment, government, law, medicine, science, social science, sports, and technology.

ContributorsDerby-Lawson, Lili (Author) / Zheng, Yi (Thesis director) / Zhang, Helen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Economics Program in CLAS (Contributor) / School of Sustainability (Contributor)
Created2023-05
157699-Thumbnail Image.png
Description
Network analysis is a key conceptual orientation and analytical tool in the social sciences that emphasizes the embeddedness of individual behavior within a larger web of social relations. The network approach is used to better understand the cause and consequence of social interactions which cannot be treated as independent. The

Network analysis is a key conceptual orientation and analytical tool in the social sciences that emphasizes the embeddedness of individual behavior within a larger web of social relations. The network approach is used to better understand the cause and consequence of social interactions which cannot be treated as independent. The relational nature of network data and models, however, amplify the methodological concerns associated with inaccurate or missing data. This dissertation addresses such concerns via three projects. As a motivating substantive example, Project 1 examines factors associated with the selection of interaction partners by students at a large urban high school implementing a reform which, like many organizational improvement initiatives, is associated with a theory of change that posits changes to the structuring of social interactions as a central causal pathway to improved outcomes. A distinctive aspect of the data used in Project 1 is that it was a complete egocentric network census – in addition to being asked about their own relationships, students were asked about the relationships between alters that they nominated in the self-report. This enables two unique examinations of methodological challenges in network survey data collection: Project 2 examines the factors related to how well survey respondents assess the strength of social connections between others, finding that "informant" competence corresponds positively with their social proximity to target dyad as well as their centrality in the network. Project 3 explores using such third-party reports to augment network imputation methods, and finds that incorporating third-party reports into model-based methods provides a significant boost in imputation accuracy. Together these findings provide important implications for collecting and extrapolating data in research contexts where a complete social network census is highly desirable but infeasible.
ContributorsBates, Jordan T (Author) / Maroulis, Spiro J (Thesis advisor) / Kang, Yun (Thesis advisor) / Frank, Kenneth A. (Committee member) / Arizona State University (Publisher)
Created2019