Matching Items (24)
Filtering by

Clear all filters

151957-Thumbnail Image.png
Description
Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.
ContributorsCham, Hei Ning (Author) / Tein, Jenn-Yun (Thesis advisor) / Enders, Stephen G (Thesis advisor) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2013
153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS)

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
ContributorsMistler, Stephen (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona (Committee member) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
149971-Thumbnail Image.png
Description
Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful cross-group comparisons, failure to attend to possible sources of latent class heterogeneity in the form of class-based differences in factor structure has the potential to compromise conclusions with respect to observed groups and may result in misguided attempts at instrument development and theory refinement. The present studies examined the sensitivity of two widely used confirmatory factor analytic model fit indices, the chi-square test of model fit and RMSEA, to latent class differences in factor structure. Two primary questions were addressed. The first of these concerned the impact of latent class differences in factor loadings with respect to model fit in a single sample reflecting a mixture of classes. The second question concerned the impact of latent class differences in configural structure on tests of factorial invariance across observed groups. The results suggest that both indices are highly insensitive to class-based differences in factor loadings. Across sample size conditions, models with medium (0.2) sized loading differences were rejected by the chi-square test of model fit at rates just slightly higher than the nominal .05 rate of rejection that would be expected under a true null hypothesis. While rates of rejection increased somewhat when the magnitude of loading difference increased, even the largest sample size with equal class representation and the most extreme violations of loading invariance only had rejection rates of approximately 60%. RMSEA was also insensitive to class-based differences in factor loadings, with mean values across conditions suggesting a degree of fit that would generally be regarded as exceptionally good in practice. In contrast, both indices were sensitive to class-based differences in configural structure in the context of a multiple group analysis in which each observed group was a mixture of classes. However, preliminary evidence suggests that this sensitivity may contingent on the form of the cross-group model misspecification.
ContributorsBlackwell, Kimberly Carol (Author) / Millsap, Roger E (Thesis advisor) / Aiken, Leona S. (Committee member) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2011
150618-Thumbnail Image.png
Description
Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.
ContributorsCoxe, Stefany (Author) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2012
150016-Thumbnail Image.png
Description
Designing studies that use latent growth modeling to investigate change over time calls for optimal approaches for conducting power analysis for a priori determination of required sample size. This investigation (1) studied the impacts of variations in specified parameters, design features, and model misspecification in simulation-based power analyses and

Designing studies that use latent growth modeling to investigate change over time calls for optimal approaches for conducting power analysis for a priori determination of required sample size. This investigation (1) studied the impacts of variations in specified parameters, design features, and model misspecification in simulation-based power analyses and (2) compared power estimates across three common power analysis techniques: the Monte Carlo method; the Satorra-Saris method; and the method developed by MacCallum, Browne, and Cai (MBC). Choice of sample size, effect size, and slope variance parameters markedly influenced power estimates; however, level-1 error variance and number of repeated measures (3 vs. 6) when study length was held constant had little impact on resulting power. Under some conditions, having a moderate versus small effect size or using a sample size of 800 versus 200 increased power by approximately .40, and a slope variance of 10 versus 20 increased power by up to .24. Decreasing error variance from 100 to 50, however, increased power by no more than .09 and increasing measurement occasions from 3 to 6 increased power by no more than .04. Misspecification in level-1 error structure had little influence on power, whereas misspecifying the form of the growth model as linear rather than quadratic dramatically reduced power for detecting differences in slopes. Additionally, power estimates based on the Monte Carlo and Satorra-Saris techniques never differed by more than .03, even with small sample sizes, whereas power estimates for the MBC technique appeared quite discrepant from the other two techniques. Results suggest the choice between using the Satorra-Saris or Monte Carlo technique in a priori power analyses for slope differences in latent growth models is a matter of preference, although features such as missing data can only be considered within the Monte Carlo approach. Further, researchers conducting power analyses for slope differences in latent growth models should pay greatest attention to estimating slope difference, slope variance, and sample size. Arguments are also made for examining model-implied covariance matrices based on estimated parameters and graphic depictions of slope variance to help ensure parameter estimates are reasonable in a priori power analysis.
ContributorsVan Vleet, Bethany Lucía (Author) / Thompson, Marilyn S. (Thesis advisor) / Green, Samuel B. (Committee member) / Enders, Craig K. (Committee member) / Arizona State University (Publisher)
Created2011
154088-Thumbnail Image.png
Description
Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand

Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand mean centered (CGM) level-1 predictors in two-level models contain two sources of variability (i.e., within-cluster variability and between-cluster variability), interactions involving RAS or CGM level-1 predictors also contain more than one source of variability. In this Master’s thesis, I use simulations to demonstrate that ignoring the four sources of variability in a total level-1 interaction effect can lead to erroneous conclusions. I explain how to parse a total level-1 interaction effect into four specific interaction effects, derive equivalencies between CGM and centering within context (CWC) for this model, and describe how the interpretations of the fixed effects change under CGM and CWC. Finally, I provide an empirical example using diary data collected from working adults with chronic pain.
ContributorsMazza, Gina L (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
155978-Thumbnail Image.png
Description
Though the likelihood is a useful tool for obtaining estimates of regression parameters, it is not readily available in the fit of hierarchical binary data models. The correlated observations negate the opportunity to have a joint likelihood when fitting hierarchical logistic regression models. Through conditional likelihood, inferences for the regression

Though the likelihood is a useful tool for obtaining estimates of regression parameters, it is not readily available in the fit of hierarchical binary data models. The correlated observations negate the opportunity to have a joint likelihood when fitting hierarchical logistic regression models. Through conditional likelihood, inferences for the regression and covariance parameters as well as the intraclass correlation coefficients are usually obtained. In those cases, I have resorted to use of Laplace approximation and large sample theory approach for point and interval estimates such as Wald-type confidence intervals and profile likelihood confidence intervals. These methods rely on distributional assumptions and large sample theory. However, when dealing with small hierarchical datasets they often result in severe bias or non-convergence. I present a generalized quasi-likelihood approach and a generalized method of moments approach; both do not rely on any distributional assumptions but only moments of response. As an alternative to the typical large sample theory approach, I present bootstrapping hierarchical logistic regression models which provides more accurate interval estimates for small binary hierarchical data. These models substitute computations as an alternative to the traditional Wald-type and profile likelihood confidence intervals. I use a latent variable approach with a new split bootstrap method for estimating intraclass correlation coefficients when analyzing binary data obtained from a three-level hierarchical structure. It is especially useful with small sample size and easily expanded to multilevel. Comparisons are made to existing approaches through both theoretical justification and simulation studies. Further, I demonstrate my findings through an analysis of three numerical examples, one based on cancer in remission data, one related to the China’s antibiotic abuse study, and a third related to teacher effectiveness in schools from a state of southwest US.
ContributorsWang, Bei (Author) / Wilson, Jeffrey R (Thesis advisor) / Kamarianakis, Ioannis (Committee member) / Reiser, Mark R. (Committee member) / St Louis, Robert (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2017
156112-Thumbnail Image.png
Description
Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a

Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a partial dose due to nonadherence. Using these data, we can estimate the magnitude of the treatment effect at different levels of adherence, which serve as a proxy for different levels of treatment. In this dissertation, I conducted Monte Carlo simulations to evaluate when linear dose-response effects can be accurately and precisely estimated in randomized experiments comparing a no-treatment control condition to a treatment condition with partial adherence. Specifically, I evaluated the performance of confounder adjustment and instrumental variable methods when their assumptions were met (Study 1) and when their assumptions were violated (Study 2). In Study 1, the confounder adjustment and instrumental variable methods provided unbiased estimates of the dose-response effect across sample sizes (200, 500, 2,000) and adherence distributions (uniform, right skewed, left skewed). The adherence distribution affected power for the instrumental variable method. In Study 2, the confounder adjustment method provided unbiased or minimally biased estimates of the dose-response effect under no or weak (but not moderate or strong) unobserved confounding. The instrumental variable method provided extremely biased estimates of the dose-response effect under violations of the exclusion restriction (no direct effect of treatment assignment on the outcome), though less severe violations of the exclusion restriction should be investigated.
ContributorsMazza, Gina L (Author) / Grimm, Kevin J. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156371-Thumbnail Image.png
Description
Generalized Linear Models (GLMs) are widely used for modeling responses with non-normal error distributions. When the values of the covariates in such models are controllable, finding an optimal (or at least efficient) design could greatly facilitate the work of collecting and analyzing data. In fact, many theoretical results are obtained

Generalized Linear Models (GLMs) are widely used for modeling responses with non-normal error distributions. When the values of the covariates in such models are controllable, finding an optimal (or at least efficient) design could greatly facilitate the work of collecting and analyzing data. In fact, many theoretical results are obtained on a case-by-case basis, while in other situations, researchers also rely heavily on computational tools for design selection.

Three topics are investigated in this dissertation with each one focusing on one type of GLMs. Topic I considers GLMs with factorial effects and one continuous covariate. Factors can have interactions among each other and there is no restriction on the possible values of the continuous covariate. The locally D-optimal design structures for such models are identified and results for obtaining smaller optimal designs using orthogonal arrays (OAs) are presented. Topic II considers GLMs with multiple covariates under the assumptions that all but one covariate are bounded within specified intervals and interaction effects among those bounded covariates may also exist. An explicit formula for D-optimal designs is derived and OA-based smaller D-optimal designs for models with one or two two-factor interactions are also constructed. Topic III considers multiple-covariate logistic models. All covariates are nonnegative and there is no interaction among them. Two types of D-optimal design structures are identified and their global D-optimality is proved using the celebrated equivalence theorem.
ContributorsWang, Zhongsheng (Author) / Stufken, John (Thesis advisor) / Kamarianakis, Ioannis (Committee member) / Kao, Ming-Hung (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156631-Thumbnail Image.png
Description
Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions using the potential outcomes framework (Holland, 1988; MacKinnon, 2008; Robins & Greenland, 1992; VanderWeele, 2015), using longitudinal data to determine the temporal order of M and Y (MacKinnon, 2008), or both. The goals of this dissertation were to (1) define all indirect and direct effects in a three-wave longitudinal mediation model using the causal mediation formula (Pearl, 2012), (2) analytically compare traditional estimators (ANCOVA, difference score, and residualized change score) to the potential outcomes-defined indirect effects, and (3) use a Monte Carlo simulation to compare the performance of regression and potential outcomes-based methods for estimating longitudinal indirect effects and apply the methods to an empirical dataset. The results of the causal mediation formula revealed the potential outcomes definitions of indirect effects are equivalent to the product of coefficient estimators in a three-wave longitudinal mediation model with linear and additive relations. It was demonstrated with analytical comparisons that the ANCOVA, difference score, and residualized change score models’ estimates of two time-specific indirect effects differ as a function of the respective mediator-outcome relations at each time point. The traditional model that performed the best in terms of the evaluation criteria in the Monte Carlo study was the ANCOVA model and the potential outcomes model that performed the best in terms of the evaluation criteria was sequential G-estimation. Implications and future directions are discussed.
ContributorsValente, Matthew J (Author) / Mackinnon, David P (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Keving (Committee member) / Chassin, Laurie (Committee member) / Arizona State University (Publisher)
Created2018