Matching Items (21)
Filtering by

Clear all filters

152220-Thumbnail Image.png
Description
Many longitudinal studies, especially in clinical trials, suffer from missing data issues. Most estimation procedures assume that the missing values are ignorable or missing at random (MAR). However, this assumption leads to unrealistic simplification and is implausible for many cases. For example, an investigator is examining the effect of treatment

Many longitudinal studies, especially in clinical trials, suffer from missing data issues. Most estimation procedures assume that the missing values are ignorable or missing at random (MAR). However, this assumption leads to unrealistic simplification and is implausible for many cases. For example, an investigator is examining the effect of treatment on depression. Subjects are scheduled with doctors on a regular basis and asked questions about recent emotional situations. Patients who are experiencing severe depression are more likely to miss an appointment and leave the data missing for that particular visit. Data that are not missing at random may produce bias in results if the missing mechanism is not taken into account. In other words, the missing mechanism is related to the unobserved responses. Data are said to be non-ignorable missing if the probabilities of missingness depend on quantities that might not be included in the model. Classical pattern-mixture models for non-ignorable missing values are widely used for longitudinal data analysis because they do not require explicit specification of the missing mechanism, with the data stratified according to a variety of missing patterns and a model specified for each stratum. However, this usually results in under-identifiability, because of the need to estimate many stratum-specific parameters even though the eventual interest is usually on the marginal parameters. Pattern mixture models have the drawback that a large sample is usually required. In this thesis, two studies are presented. The first study is motivated by an open problem from pattern mixture models. Simulation studies from this part show that information in the missing data indicators can be well summarized by a simple continuous latent structure, indicating that a large number of missing data patterns may be accounted by a simple latent factor. Simulation findings that are obtained in the first study lead to a novel model, a continuous latent factor model (CLFM). The second study develops CLFM which is utilized for modeling the joint distribution of missing values and longitudinal outcomes. The proposed CLFM model is feasible even for small sample size applications. The detailed estimation theory, including estimating techniques from both frequentist and Bayesian perspectives is presented. Model performance and evaluation are studied through designed simulations and three applications. Simulation and application settings change from correctly-specified missing data mechanism to mis-specified mechanism and include different sample sizes from longitudinal studies. Among three applications, an AIDS study includes non-ignorable missing values; the Peabody Picture Vocabulary Test data have no indication on missing data mechanism and it will be applied to a sensitivity analysis; the Growth of Language and Early Literacy Skills in Preschoolers with Developmental Speech and Language Impairment study, however, has full complete data and will be used to conduct a robust analysis. The CLFM model is shown to provide more precise estimators, specifically on intercept and slope related parameters, compared with Roy's latent class model and the classic linear mixed model. This advantage will be more obvious when a small sample size is the case, where Roy's model experiences challenges on estimation convergence. The proposed CLFM model is also robust when missing data are ignorable as demonstrated through a study on Growth of Language and Early Literacy Skills in Preschoolers.
ContributorsZhang, Jun (Author) / Reiser, Mark R. (Thesis advisor) / Barber, Jarrett (Thesis advisor) / Kao, Ming-Hung (Committee member) / Wilson, Jeffrey (Committee member) / St Louis, Robert D. (Committee member) / Arizona State University (Publisher)
Created2013
150135-Thumbnail Image.png
Description
It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among

It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among multi-categorical variables. Pearson's chi-squared statistic is well-known in goodness-of-fit testing, but it is sometimes considered to produce an omnibus test as it gives little guidance to the source of poor fit once the null hypothesis is rejected. However, its components can provide powerful directional tests. In this dissertation, orthogonal components are used to develop goodness-of-fit tests for models fit to the counts obtained from the cross-classification of multi-category dependent variables. Ordinal categories are assumed. Orthogonal components defined on marginals are obtained when analyzing multi-dimensional contingency tables through the use of the QR decomposition. A subset of these orthogonal components can be used to construct limited-information tests that allow one to identify the source of lack-of-fit and provide an increase in power compared to Pearson's test. These tests can address the adverse effects presented when data are sparse. The tests rely on the set of first- and second-order marginals jointly, the set of second-order marginals only, and the random forest method, a popular algorithm for modeling large complex data sets. The performance of these tests is compared to the likelihood ratio test as well as to tests based on orthogonal polynomial components. The derived goodness-of-fit tests are evaluated with studies for detecting two- and three-way associations that are not accounted for by a categorical variable factor model with a single latent variable. In addition the tests are used to investigate the case when the model misspecification involves parameter constraints for large and sparse contingency tables. The methodology proposed here is applied to data from the 38th round of the State Survey conducted by the Institute for Public Policy and Michigan State University Social Research (2005) . The results illustrate the use of the proposed techniques in the context of a sparse data set.
ContributorsMilovanovic, Jelena (Author) / Young, Dennis (Thesis advisor) / Reiser, Mark R. (Thesis advisor) / Wilson, Jeffrey (Committee member) / Eubank, Randall (Committee member) / Yang, Yan (Committee member) / Arizona State University (Publisher)
Created2011
156264-Thumbnail Image.png
Description
The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error

The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error rate due to sparseness. Pearson's statistic can be decomposed into orthogonal components associated with the marginal distributions of observed variables, and an omnibus fit statistic can be obtained as a sum of these components. When the statistic is a sum of components for lower-order marginals, it has good performance for Type I error rate and statistical power even when applied to a sparse table. In this dissertation, goodness-of-fit statistics using orthogonal components based on second- third- and fourth-order marginals were examined. If lack-of-fit is present in higher-order marginals, then a test that incorporates the higher-order marginals may have a higher power than a test that incorporates only first- and/or second-order marginals. To this end, two new statistics based on the orthogonal components of Pearson's chi-square that incorporate third- and fourth-order marginals were developed, and the Type I error, empirical power, and asymptotic power under different sparseness conditions were investigated. Individual orthogonal components as test statistics to identify lack-of-fit were also studied. The performance of individual orthogonal components to other popular lack-of-fit statistics were also compared. When the number of manifest variables becomes larger than 20, most of the statistics based on marginal distributions have limitations in terms of computer resources and CPU time. Under this problem, when the number manifest variables is larger than or equal to 20, the performance of a bootstrap based method to obtain p-values for Pearson-Fisher statistic, fit to confirmatory dichotomous variable factor analysis model, and the performance of Tollenaar and Mooijaart (2003) statistic were investigated.
ContributorsDassanayake, Mudiyanselage Maduranga Kasun (Author) / Reiser, Mark R. (Thesis advisor) / Kao, Ming-Hung (Committee member) / Wilson, Jeffrey (Committee member) / St. Louis, Robert (Committee member) / Kamarianakis, Ioannis (Committee member) / Arizona State University (Publisher)
Created2018
156576-Thumbnail Image.png
Description
The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, a threshold autoregressive (TAR) or logistic smooth transition autoregressive (LSTAR) model may simplify complex nonlinear associations to conditional weakly stationary processes. For ARMA, TAR, and STAR, order parameters quantify the extent past information is associated with the future. Unfortunately, even if model orders are known a priori, the possibility of over-fitting can lead to sub-optimal forecasting performance. By intentionally overestimating these orders, a linear representation of the full model is exploited and Bayesian regularization can be used to achieve sparsity. Global-local shrinkage priors for AR, MA, and exogenous coefficients are adopted to pull posterior means toward 0 without over-shrinking relevant effects. This dissertation introduces, evaluates, and compares Bayesian techniques that automatically perform model selection and coefficient estimation of ARMA, TAR, and STAR models. Multiple Monte Carlo experiments illustrate the accuracy of these methods in finding the "true" data generating process. Practical applications demonstrate their efficacy in forecasting.
ContributorsGiacomazzo, Mario (Author) / Kamarianakis, Yiannis (Thesis advisor) / Reiser, Mark R. (Committee member) / McCulloch, Robert (Committee member) / Hahn, Richard (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2018
156580-Thumbnail Image.png
Description
This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain that are critical for population discrimination. The undertaken analyses suggest that derivate-based information contributes significantly in improved classification performance relative to recently published studies on SLE plasma thermograms.
ContributorsBuscaglia, Robert, Ph.D (Author) / Kamarianakis, Yiannis (Thesis advisor) / Armbruster, Dieter (Committee member) / Lanchier, Nicholas (Committee member) / McCulloch, Robert (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2018
157121-Thumbnail Image.png
Description
In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different

In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different illumination intensities or different local environments); and (3) inferring the camera gain. My general theoretical framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes with a Markov chain Monte Carlo sampling scheme, which I further specify and implement for Total Internal Reflection Fluorescence (TIRF) microscopy data, benchmarking the method on synthetic data. These three frameworks are self-contained, and can be used concurrently so that the fluorescence profile and emitter locations are both considered unknown and, under some conditions, learned simultaneously. The framework I present is flexible and may be adapted to accommodate the inference of other parameters, such as emission photophysical kinetics and the trajectories of moving molecules. My TIRF-specific implementation may find use in the study of structures on cell membranes, or in studying local sample properties that affect fluorescent molecule photon emission rates.
ContributorsWallgren, Ross (Author) / Presse, Steve (Thesis advisor) / Armbruster, Hans (Thesis advisor) / McCulloch, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157274-Thumbnail Image.png
Description
Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading

Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading algorithms, including BART. The results show that XBART maintains BART’s predictive power while reducing its computation time. The thesis also describes the development of a Python package implementing XBART.
ContributorsYalov, Saar (Author) / Hahn, P. Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2019
133482-Thumbnail Image.png
Description
Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries

Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries with missing data. The new column is created to measure price difference to create a more accurate analysis on the change in price. Eight relevant variables are selected using cross validation: the total number of bitcoins, the total size of the blockchains, the hash rate, mining difficulty, revenue from mining, transaction fees, the cost of transactions and the estimated transaction volume. The in-sample data is modeled using a simple tree fit, first with one variable and then with eight. Using all eight variables, the in-sample model and data have a correlation of 0.6822657. The in-sample model is improved by first applying bootstrap aggregation (also known as bagging) to fit 400 decision trees to the in-sample data using one variable. Then the random forests technique is applied to the data using all eight variables. This results in a correlation between the model and data of 9.9443413. The random forests technique is then applied to an Ethereum dataset, resulting in a correlation of 9.6904798. Finally, an out-of-sample model is created for Bitcoin and Ethereum using random forests, with a benchmark correlation of 0.03 for financial data. The correlation between the training model and the testing data for Bitcoin was 0.06957639, while for Ethereum the correlation was -0.171125. In conclusion, it is confirmed that cryptocurrencies can have accurate in-sample models by applying the random forests method to a dataset. However, out-of-sample modeling is more difficult, but in some cases better than typical forms of financial data. It should also be noted that cryptocurrency data has similar properties to other related financial datasets, realizing future potential for system modeling for cryptocurrency within the financial world.
ContributorsBrowning, Jacob Christian (Author) / Meuth, Ryan (Thesis director) / Jones, Donald (Committee member) / McCulloch, Robert (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134937-Thumbnail Image.png
Description
Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not

Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not given the appropriate recognition nor credit for the amount of work they do. This contribution is sometimes in question as it depends on the school and the sports teams. The benefits are believed to vary based on the university or professional teams. This research investigated how collegiate cheerleaders and dancers add value to the university sport experience. We interviewed key personnel at the university and conference level and polled spectators at sporting events such as basketball and football. We found that the university administration and athletic personnel see the ASU Spirit Squad as value added but spectators had a totally different perspective. The university acknowledges the added value of the Spirit Squad and its necessity. Spectators attend ASU sporting events to support the university and for the entertainment. They enjoy watching the ASU Spirit Squad perform but would continue to attend ASU sporting events even if cheerleaders and dancers were not there.
ContributorsThomas, Jessica Ann (Author) / Wilson, Jeffrey (Thesis director) / Garner, Deana (Committee member) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134976-Thumbnail Image.png
Description
Problems related to alcohol consumption cause not only extra economic expenses, but are an expense to the health of both drinkers and non-drinkers due to the harm directly and indirectly caused by alcohol consumption. Investigating predictors and reasons for alcohol-related problems is of importance, as alcohol-related problems could be prevented

Problems related to alcohol consumption cause not only extra economic expenses, but are an expense to the health of both drinkers and non-drinkers due to the harm directly and indirectly caused by alcohol consumption. Investigating predictors and reasons for alcohol-related problems is of importance, as alcohol-related problems could be prevented by quitting or limiting consumption of alcohol. We were interested in predicting alcohol-related problems using multiple linear regression and regression trees, and then comparing the regressions to the tree. Impaired control, anxiety sensitivity, mother permissiveness, father permissiveness, gender, and age were included as predictors. The data used was comprised of participants (n=835) sampled from students at Arizona State University. A multiple linear regression without interactions, multiple linear regression with two-way interactions and squares, and a regression tree were used and compared. The regression and the tree had similar results. Multiple interactions of variables predicted alcohol-related problems. Overall, the tree was easier to interpret than the regressions, however, the regressions provided specific predicted alcohol-related problems scores, whereas the tree formed large groups and had a predicted alcohol-related problems score for each group. Nevertheless, the tree still predicted alcohol-related problems nearly as well, if not better than the regressions.
ContributorsVoorhies, Kirsten Reed (Author) / McCulloch, Robert (Thesis director) / Zheng, Yi (Committee member) / Patock-Peckham, Julie (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12