Matching Items (5)
Filtering by

Clear all filters

136255-Thumbnail Image.png
Description
Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that hel

Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that help predict how much time it takes to implement a cost-saving project. These projects had previously been considered only on the merit of cost savings, but with an added dimension of time, we hope to forecast time according to a number of variables. With such a forecast, we can then apply it to an expense project prioritization model which relates time and cost savings together, compares many different projects simultaneously, and returns a series of present value calculations over different ranges of time. The goal is twofold: assist with an accurate prediction of a project's time to implementation, and provide a basis to compare different projects based on their present values, ultimately helping to reduce the Company's manufacturing costs and improve gross margins. We believe this approach, and the research found toward this goal, is most valuable for the Company. Two coaches from the Company have provided assistance and clarified our questions when necessary throughout our research. In this paper, we begin by defining the problem, setting an objective, and establishing a checklist to monitor our progress. Next, our attention shifts to the data: making observations, trimming the dataset, framing and scoping the variables to be used for the analysis portion of the paper. Before creating a hypothesis, we perform a preliminary statistical analysis of certain individual variables to enrich our variable selection process. After the hypothesis, we run multiple linear regressions with project duration as the dependent variable. After regression analysis and a test for robustness, we shift our focus to an intuitive model based on rules of thumb. We relate these models to an expense project prioritization tool developed using Microsoft Excel software. Our deliverables to the Company come in the form of (1) a rules of thumb intuitive model and (2) an expense project prioritization tool.
ContributorsAl-Assi, Hashim (Co-author) / Chiang, Robert (Co-author) / Liu, Andrew (Co-author) / Ludwick, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05
134937-Thumbnail Image.png
Description
Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not

Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not given the appropriate recognition nor credit for the amount of work they do. This contribution is sometimes in question as it depends on the school and the sports teams. The benefits are believed to vary based on the university or professional teams. This research investigated how collegiate cheerleaders and dancers add value to the university sport experience. We interviewed key personnel at the university and conference level and polled spectators at sporting events such as basketball and football. We found that the university administration and athletic personnel see the ASU Spirit Squad as value added but spectators had a totally different perspective. The university acknowledges the added value of the Spirit Squad and its necessity. Spectators attend ASU sporting events to support the university and for the entertainment. They enjoy watching the ASU Spirit Squad perform but would continue to attend ASU sporting events even if cheerleaders and dancers were not there.
ContributorsThomas, Jessica Ann (Author) / Wilson, Jeffrey (Thesis director) / Garner, Deana (Committee member) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
147645-Thumbnail Image.png
Description

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones Industrial Average. The results showed that a tri-gram bag led to a 49% trend accuracy, a 1% increase when compared to the single-gram representation’s accuracy of 48%.

ContributorsBarolli, Adeiron (Author) / Jimenez Arista, Laura (Thesis director) / Wilson, Jeffrey (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
164185-Thumbnail Image.png
Description

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents.

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents. While this may sound nefarious, the vast amounts of data about these games and student-athletes can be used to glean insights about the sports themselves in order to help student-athletes be more successful. Data analytics can be used to make sense of the available data by creating models and using other tools available that can predict how student-athletes and their teams will do in the future based on the data gathered from how they have performed in the past. Colleges and universities across the country compete in a vast array of sports. As a result of these differences, the sports with the largest amounts of data available will be the more popular college sports, such as football, men’s and women’s basketball, baseball and softball. Arizona State University, as a member of the Pac-12 conference, has a storied athletic tradition and decades of history in all of these sports, providing a large amount of data that can be used to analyze student-athlete success in these sports and help predict future success. However, data is available from numerous other college athletic programs that could provide a much larger sample to help predict with greater accuracy why certain teams and student-athletes are more successful than others. The explosion of analytics across the sports world has resulted in a new focus on utilizing statistical techniques to improve all aspects of different sports. Sports science has influenced medical departments, and model-building has been used to determine optimal in-game strategy and predict the outcomes of future games based on team strength. It is this latter approach that has become the focus of this paper, with football being used as a subject due to its vast popularity and massive supply of easily accessible data.

ContributorsLindstrom, Trent (Author) / Schneider, Laurence (Thesis director) / Wilson, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
164186-Thumbnail Image.png
Description

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents.

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents. While this may sound nefarious, the vast amounts of data about these games and student-athletes can be used to glean insights about the sports themselves in order to help student-athletes be more successful. Data analytics can be used to make sense of the available data by creating models and using other tools available that can predict how student-athletes and their teams will do in the future based on the data gathered from how they have performed in the past. Colleges and universities across the country compete in a vast array of sports. As a result of these differences, the sports with the largest amounts of data available will be the more popular college sports, such as football, men’s and women’s basketball, baseball and softball. Arizona State University, as a member of the Pac-12 conference, has a storied athletic tradition and decades of history in all of these sports, providing a large amount of data that can be used to analyze student-athlete success in these sports and help predict future success. However, data is available from numerous other college athletic programs that could provide a much larger sample to help predict with greater accuracy why certain teams and student-athletes are more successful than others. The explosion of analytics across the sports world has resulted in a new focus on utilizing statistical techniques to improve all aspects of different sports. Sports science has influenced medical departments, and model-building has been used to determine optimal in-game strategy and predict the outcomes of future games based on team strength. It is this latter approach that has become the focus of this paper, with football being used as a subject due to its vast popularity and massive supply of easily accessible data.

ContributorsLindstrom, Trent (Author) / Schneider, Laurence (Thesis director) / Wilson, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05