Matching Items (35)
Filtering by

Clear all filters

158061-Thumbnail Image.png
Description
Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model

Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model that is considered here involves a mixture of ordinary linear models for the continuous response and a generalized linear model for the binary response. Using the complete class approach, tighter upper bounds on the number of support points required for finding locally optimal designs are derived for the mixed responses models studied in this work.

In the first part of this dissertation, a theoretical result was developed to facilitate the search of locally symmetric optimal designs for mixed responses models with one continuous covariate. Then, the study was extended to mixed responses models that include group effects. Two types of mixed responses models with group effects were investigated. The first type includes models having no common parameters across subject group, and the second type of models allows some common parameters (e.g., a common slope) across groups. In addition to complete class results, an efficient algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Finally, the first-order mixed responses model is extended to a type of a quadratic mixed responses model with a quadratic polynomial predictor placed in its linear model.
ContributorsKhogeer, Hazar Abdulrahman (Author) / Kao, Ming-Hung (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2020
158520-Thumbnail Image.png
Description
In this dissertation two research questions in the field of applied experimental design were explored. First, methods for augmenting the three-level screening designs called Definitive Screening Designs (DSDs) were investigated. Second, schemes for strategic subdata selection for nonparametric predictive modeling with big data were developed.

Under sparsity, the structure

In this dissertation two research questions in the field of applied experimental design were explored. First, methods for augmenting the three-level screening designs called Definitive Screening Designs (DSDs) were investigated. Second, schemes for strategic subdata selection for nonparametric predictive modeling with big data were developed.

Under sparsity, the structure of DSDs can allow for the screening and optimization of a system in one step, but in non-sparse situations estimation of second-order models requires augmentation of the DSD. In this work, augmentation strategies for DSDs were considered, given the assumption that the correct form of the model for the response of interest is quadratic. Series of augmented designs were constructed and explored, and power calculations, model-robustness criteria, model-discrimination criteria, and simulation study results were used to identify the number of augmented runs necessary for (1) effectively identifying active model effects, and (2) precisely predicting a response of interest. When the goal is identification of active effects, it is shown that supersaturated designs are sufficient; when the goal is prediction, it is shown that little is gained by augmenting beyond the design that is saturated for the full quadratic model. Surprisingly, augmentation strategies based on the I-optimality criterion do not lead to better predictions than strategies based on the D-optimality criterion.

Computational limitations can render standard statistical methods infeasible in the face of massive datasets, necessitating subsampling strategies. In the big data context, the primary objective is often prediction but the correct form of the model for the response of interest is likely unknown. Here, two new methods of subdata selection were proposed. The first is based on clustering, the second is based on space-filling designs, and both are free from model assumptions. The performance of the proposed methods was explored visually via low-dimensional simulated examples; via real data applications; and via large simulation studies. In all cases the proposed methods were compared to existing, widely used subdata selection methods. The conditions under which the proposed methods provide advantages over standard subdata selection strategies were identified.
ContributorsNachtsheim, Abigael (Author) / Stufken, John (Thesis advisor) / Fricks, John (Committee member) / Kao, Ming-Hung (Committee member) / Montgomery, Douglas C. (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2020
158850-Thumbnail Image.png
Description
Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were

Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were proposed to overcome the challenges in practice. There are three major parts in the dissertation.

In the first part, nonlinear regression models were embedded into a multistage workflow to predict the spatial abundance of reef fish species in the Gulf of Mexico. There were two challenges, zero-inflated data and out of sample prediction. The methods and models in the workflow could effectively handle the zero-inflated sampling data without strong assumptions. Three strategies were proposed to solve the out of sample prediction problem. The results and discussions showed that the nonlinear prediction had the advantages of high accuracy, low bias and well-performed in multi-resolution.

In the second part, a two-stage spatial regression model was proposed for analyzing soil carbon stock (SOC) data. In the first stage, there was a spatial linear mixed model that captured the linear and stationary effects. In the second stage, a generalized additive model was used to explain the nonlinear and nonstationary effects. The results illustrated that the two-stage model had good interpretability in understanding the effect of covariates, meanwhile, it kept high prediction accuracy which is competitive to the popular machine learning models, like, random forest, xgboost and support vector machine.

A new nonlinear regression model, Gaussian process BART (Bayesian additive regression tree), was proposed in the third part. Combining advantages in both BART and Gaussian process, the model could capture the nonlinear effects of both observed and latent covariates. To develop the model, first, the traditional BART was generalized to accommodate correlated errors. Then, the failure of likelihood based Markov chain Monte Carlo (MCMC) in parameter estimating was discussed. Based on the idea of analysis of variation, back comparing and tuning range, were proposed to tackle this failure. Finally, effectiveness of the new model was examined by experiments on both simulation and real data.
ContributorsLu, Xuetao (Author) / McCulloch, Robert (Thesis advisor) / Hahn, Paul (Committee member) / Lan, Shiwei (Committee member) / Zhou, Shuang (Committee member) / Saul, Steven (Committee member) / Arizona State University (Publisher)
Created2020
156148-Thumbnail Image.png
Description
Correlation is common in many types of data, including those collected through longitudinal studies or in a hierarchical structure. In the case of clustering, or repeated measurements, there is inherent correlation between observations within the same group, or between observations obtained on the same subject. Longitudinal studies also introduce association

Correlation is common in many types of data, including those collected through longitudinal studies or in a hierarchical structure. In the case of clustering, or repeated measurements, there is inherent correlation between observations within the same group, or between observations obtained on the same subject. Longitudinal studies also introduce association between the covariates and the outcomes across time. When multiple outcomes are of interest, association may exist between the various models. These correlations can lead to issues in model fitting and inference if not properly accounted for. This dissertation presents three papers discussing appropriate methods to properly consider different types of association. The first paper introduces an ANOVA based measure of intraclass correlation for three level hierarchical data with binary outcomes, and corresponding properties. This measure is useful for evaluating when the correlation due to clustering warrants a more complex model. This measure is used to investigate AIDS knowledge in a clustered study conducted in Bangladesh. The second paper develops the Partitioned generalized method of moments (Partitioned GMM) model for longitudinal studies. This model utilizes valid moment conditions to separately estimate the varying effects of each time-dependent covariate on the outcome over time using multiple coefficients. The model is fit to data from the National Longitudinal Study of Adolescent to Adult Health (Add Health) to investigate risk factors of childhood obesity. In the third paper, the Partitioned GMM model is extended to jointly estimate regression models for multiple outcomes of interest. Thus, this approach takes into account both the correlation between the multivariate outcomes, as well as the correlation due to time-dependency in longitudinal studies. The model utilizes an expanded weight matrix and objective function composed of valid moment conditions to simultaneously estimate optimal regression coefficients. This approach is applied to Add Health data to simultaneously study drivers of outcomes including smoking, social alcohol usage, and obesity in children.
ContributorsIrimata, Kyle (Author) / Wilson, Jeffrey R (Thesis advisor) / Broatch, Jennifer (Committee member) / Kamarianakis, Ioannis (Committee member) / Kao, Ming-Hung (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2018
155868-Thumbnail Image.png
Description
This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way

This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way to design such experiments remains unclear. To address this void, some useful results are developed to guide the selection of optimal experimental designs in such studies. The results are mainly built upon a powerful tool called the complete class approach and a nonlinear optimization algorithm. The complete class approach was originally developed for a univariate response, but it is extended to the case of bivariate responses of mixed variable types. Consequently, the number of candidate designs are significantly reduced. An optimization algorithm is then applied to efficiently search the small class of candidate designs for the D- and A-optimal designs. Furthermore, the optimality of the obtained designs is verified by the general equivalence theorem. In the first part of the study, the focus is on a simple, first-order model. The study is expanded to a model with a quadratic polynomial predictor. The obtained designs can help to render a precise statistical inference in practice or serve as a benchmark for evaluating the quality of other designs.
ContributorsKim, Soohyun (Author) / Kao, Ming-Hung (Thesis advisor) / Dueck, Amylou (Committee member) / Pan, Rong (Committee member) / Reiser, Mark R. (Committee member) / Stufken, John (Committee member) / Arizona State University (Publisher)
Created2017