Matching Items (19)
Filtering by

Clear all filters

151957-Thumbnail Image.png
Description
Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.
ContributorsCham, Hei Ning (Author) / Tein, Jenn-Yun (Thesis advisor) / Enders, Stephen G (Thesis advisor) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2013
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
151511-Thumbnail Image.png
Description
With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus

With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus knowledge discovery by machine learning techniques is necessary if we want to better understand information from data. In this dissertation, we explore the topics of asymmetric loss and asymmetric data in machine learning and propose new algorithms as solutions to some of the problems in these topics. We also studied variable selection of matched data sets and proposed a solution when there is non-linearity in the matched data. The research is divided into three parts. The first part addresses the problem of asymmetric loss. A proposed asymmetric support vector machine (aSVM) is used to predict specific classes with high accuracy. aSVM was shown to produce higher precision than a regular SVM. The second part addresses asymmetric data sets where variables are only predictive for a subset of the predictor classes. Asymmetric Random Forest (ARF) was proposed to detect these kinds of variables. The third part explores variable selection for matched data sets. Matched Random Forest (MRF) was proposed to find variables that are able to distinguish case and control without the restrictions that exists in linear models. MRF detects variables that are able to distinguish case and control even in the presence of interaction and qualitative variables.
ContributorsKoh, Derek (Author) / Runger, George C. (Thesis advisor) / Wu, Tong (Committee member) / Pan, Rong (Committee member) / Cesta, John (Committee member) / Arizona State University (Publisher)
Created2013
152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
153063-Thumbnail Image.png
Description
Technological advances have enabled the generation and collection of various data from complex systems, thus, creating ample opportunity to integrate knowledge in many decision making applications. This dissertation introduces holistic learning as the integration of a comprehensive set of relationships that are used towards the learning objective. The holistic view

Technological advances have enabled the generation and collection of various data from complex systems, thus, creating ample opportunity to integrate knowledge in many decision making applications. This dissertation introduces holistic learning as the integration of a comprehensive set of relationships that are used towards the learning objective. The holistic view of the problem allows for richer learning from data and, thereby, improves decision making.

The first topic of this dissertation is the prediction of several target attributes using a common set of predictor attributes. In a holistic learning approach, the relationships between target attributes are embedded into the learning algorithm created in this dissertation. Specifically, a novel tree based ensemble that leverages the relationships between target attributes towards constructing a diverse, yet strong, model is proposed. The method is justified through its connection to existing methods and experimental evaluations on synthetic and real data.

The second topic pertains to monitoring complex systems that are modeled as networks. Such systems present a rich set of attributes and relationships for which holistic learning is important. In social networks, for example, in addition to friendship ties, various attributes concerning the users' gender, age, topic of messages, time of messages, etc. are collected. A restricted form of monitoring fails to take the relationships of multiple attributes into account, whereas the holistic view embeds such relationships in the monitoring methods. The focus is on the difficult task to detect a change that might only impact a small subset of the network and only occur in a sub-region of the high-dimensional space of the network attributes. One contribution is a monitoring algorithm based on a network statistical model. Another contribution is a transactional model that transforms the task into an expedient structure for machine learning, along with a generalizable algorithm to monitor the attributed network. A learning step in this algorithm adapts to changes that may only be local to sub-regions (with a broader potential for other learning tasks). Diagnostic tools to interpret the change are provided. This robust, generalizable, holistic monitoring method is elaborated on synthetic and real networks.
ContributorsAzarnoush, Bahareh (Author) / Runger, George C. (Thesis advisor) / Bekki, Jennifer (Thesis advisor) / Pan, Rong (Committee member) / Saghafian, Soroush (Committee member) / Arizona State University (Publisher)
Created2014
149971-Thumbnail Image.png
Description
Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful cross-group comparisons, failure to attend to possible sources of latent class heterogeneity in the form of class-based differences in factor structure has the potential to compromise conclusions with respect to observed groups and may result in misguided attempts at instrument development and theory refinement. The present studies examined the sensitivity of two widely used confirmatory factor analytic model fit indices, the chi-square test of model fit and RMSEA, to latent class differences in factor structure. Two primary questions were addressed. The first of these concerned the impact of latent class differences in factor loadings with respect to model fit in a single sample reflecting a mixture of classes. The second question concerned the impact of latent class differences in configural structure on tests of factorial invariance across observed groups. The results suggest that both indices are highly insensitive to class-based differences in factor loadings. Across sample size conditions, models with medium (0.2) sized loading differences were rejected by the chi-square test of model fit at rates just slightly higher than the nominal .05 rate of rejection that would be expected under a true null hypothesis. While rates of rejection increased somewhat when the magnitude of loading difference increased, even the largest sample size with equal class representation and the most extreme violations of loading invariance only had rejection rates of approximately 60%. RMSEA was also insensitive to class-based differences in factor loadings, with mean values across conditions suggesting a degree of fit that would generally be regarded as exceptionally good in practice. In contrast, both indices were sensitive to class-based differences in configural structure in the context of a multiple group analysis in which each observed group was a mixture of classes. However, preliminary evidence suggests that this sensitivity may contingent on the form of the cross-group model misspecification.
ContributorsBlackwell, Kimberly Carol (Author) / Millsap, Roger E (Thesis advisor) / Aiken, Leona S. (Committee member) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2011
149928-Thumbnail Image.png
Description
The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation.
ContributorsTorres Garcia, Wandaliz (Author) / Meldrum, Deirdre R. (Thesis advisor) / Runger, George C. (Thesis advisor) / Gel, Esma S. (Committee member) / Li, Jing (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2011
150555-Thumbnail Image.png
Description
Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction,

Supply chains are increasingly complex as companies branch out into newer products and markets. In many cases, multiple products with moderate differences in performance and price compete for the same unit of demand. Simultaneous occurrences of multiple scenarios (competitive, disruptive, regulatory, economic, etc.), coupled with business decisions (pricing, product introduction, etc.) can drastically change demand structures within a short period of time. Furthermore, product obsolescence and cannibalization are real concerns due to short product life cycles. Analytical tools that can handle this complexity are important to quantify the impact of business scenarios/decisions on supply chain performance. Traditional analysis methods struggle in this environment of large, complex datasets with hundreds of features becoming the norm in supply chains. We present an empirical analysis framework termed Scenario Trees that provides a novel representation for impulse and delayed scenario events and a direction for modeling multivariate constrained responses. Amongst potential learners, supervised learners and feature extraction strategies based on tree-based ensembles are employed to extract the most impactful scenarios and predict their outcome on metrics at different product hierarchies. These models are able to provide accurate predictions in modeling environments characterized by incomplete datasets due to product substitution, missing values, outliers, redundant features, mixed variables and nonlinear interaction effects. Graphical model summaries are generated to aid model understanding. Models in complex environments benefit from feature selection methods that extract non-redundant feature subsets from the data. Additional model simplification can be achieved by extracting specific levels/values that contribute to variable importance. We propose and evaluate new analytical methods to address this problem of feature value selection and study their comparative performance using simulated datasets. We show that supply chain surveillance can be structured as a feature value selection problem. For situations such as new product introduction, a bottom-up approach to scenario analysis is designed using an agent-based simulation and data mining framework. This simulation engine envelopes utility theory, discrete choice models and diffusion theory and acts as a test bed for enacting different business scenarios. We demonstrate the use of machine learning algorithms to analyze scenarios and generate graphical summaries to aid decision making.
ContributorsShinde, Amit (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Villalobos, Rene (Committee member) / Janakiram, Mani (Committee member) / Arizona State University (Publisher)
Created2012
150618-Thumbnail Image.png
Description
Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.
ContributorsCoxe, Stefany (Author) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2012
151226-Thumbnail Image.png
Description
Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning of

Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning of the relevant patterns This dissertation proposes TS representations and methods for supervised TS analysis. The approaches combine new representations that handle translations and dilations of patterns with bag-of-features strategies and tree-based ensemble learning. This provides flexibility in handling time-warped patterns in a computationally efficient way. The ensemble learners provide a classification framework that can handle high-dimensional feature spaces, multiple classes and interaction between features. The proposed representations are useful for classification and interpretation of the TS data of varying complexity. The first contribution handles the problem of time warping with a feature-based approach. An interval selection and local feature extraction strategy is proposed to learn a bag-of-features representation. This is distinctly different from common similarity-based time warping. This allows for additional features (such as pattern location) to be easily integrated into the models. The learners have the capability to account for the temporal information through the recursive partitioning method. The second contribution focuses on the comprehensibility of the models. A new representation is integrated with local feature importance measures from tree-based ensembles, to diagnose and interpret time intervals that are important to the model. Multivariate time series (MTS) are especially challenging because the input consists of a collection of TS and both features within TS and interactions between TS can be important to models. Another contribution uses a different representation to produce computationally efficient strategies that learn a symbolic representation for MTS. Relationships between the multiple TS, nominal and missing values are handled with tree-based learners. Applications such as speech recognition, medical diagnosis and gesture recognition are used to illustrate the methods. Experimental results show that the TS representations and methods provide better results than competitive methods on a comprehensive collection of benchmark datasets. Moreover, the proposed approaches naturally provide solutions to similarity analysis, predictive pattern discovery and feature selection.
ContributorsBaydogan, Mustafa Gokce (Author) / Runger, George C. (Thesis advisor) / Atkinson, Robert (Committee member) / Gel, Esma (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012