Matching Items (28)
Filtering by

Clear all filters

136550-Thumbnail Image.png
Description
The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team

The NFL is one of largest and most influential industries in the world. In America there are few companies that have a stronger hold on the American culture and create such a phenomena from year to year. In this project aimed to develop a strategy that helps an NFL team be as successful as possible by defining which positions are most important to a team's success. Data from fifteen years of NFL games was collected and information on every player in the league was analyzed. First there needed to be a benchmark which describes a team as being average and then every player in the NFL must be compared to that average. Based on properties of linear regression using ordinary least squares this project aims to define such a model that shows each position's importance. Finally, once such a model had been established then the focus turned to the NFL draft in which the goal was to find a strategy of where each position needs to be drafted so that it is most likely to give the best payoff based on the results of the regression in part one.
ContributorsBalzer, Kevin Ryan (Author) / Goegan, Brian (Thesis director) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
135858-Thumbnail Image.png
Description
The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic

The concentration factor edge detection method was developed to compute the locations and values of jump discontinuities in a piecewise-analytic function from its first few Fourier series coecients. The method approximates the singular support of a piecewise smooth function using an altered Fourier conjugate partial sum. The accuracy and characteristic features of the resulting jump function approximation depends on these lters, known as concentration factors. Recent research showed that that these concentration factors could be designed using aexible iterative framework, improving upon the overall accuracy and robustness of the method, especially in the case where some Fourier data are untrustworthy or altogether missing. Hypothesis testing methods were used to determine how well the original concentration factor method could locate edges using noisy Fourier data. This thesis combines the iterative design aspect of concentration factor design and hypothesis testing by presenting a new algorithm that incorporates multiple concentration factors into one statistical test, which proves more ective at determining jump discontinuities than the previous HT methods. This thesis also examines how the quantity and location of Fourier data act the accuracy of HT methods. Numerical examples are provided.
ContributorsLubold, Shane Michael (Author) / Gelb, Anne (Thesis director) / Cochran, Doug (Committee member) / Viswanathan, Aditya (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132267-Thumbnail Image.png
Description
AARP estimates that 90% of seniors wish to remain in their homes during retirement. Seniors need assistance as they age, historically they have received assistance from either family members, nursing homes, or Continuing Care Retirement Communities. For seniors not wanting any of these options, there has been very few alternatives.

AARP estimates that 90% of seniors wish to remain in their homes during retirement. Seniors need assistance as they age, historically they have received assistance from either family members, nursing homes, or Continuing Care Retirement Communities. For seniors not wanting any of these options, there has been very few alternatives. Now, the emergence of the continuing care at home program is providing hope for a different method of elder care moving forward. CCaH programs offer services such as: skilled nursing care, care coordination, emergency response systems, aid with personal and health care, and transportation. Such services allow seniors to continue to live in their own home with assistance as their health deteriorates over time. Currently, only 30 CCaH programs exist. With the growth of the elderly population in the coming years, this model seems poised for growth.
ContributorsSturm, Brendan (Author) / Milovanovic, Jelena (Thesis director) / Hassett, Matthew (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133413-Thumbnail Image.png
Description
Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on modeling catastrophes. Setting reserves for catastrophe losses is difficult due to their unpredictable and often long-tailed nature. Determining loss development factors (LDFs) to estimate the ultimate loss amounts for catastrophe events is one method for setting reserves. In an attempt to aid Company XYZ set more accurate reserves, the research conducted focuses on estimating LDFs for catastrophes which have already occurred and have been settled. Furthermore, the research describes the process used to build a linear model in R to estimate LDFs for Company XYZ's closed catastrophe claims from 2001 \u2014 2016. This linear model was used to predict a catastrophe's LDFs based on the age in weeks of the catastrophe during the first year. Back testing was also performed, as was the comparison between the estimated ultimate losses and actual losses. Future research consideration was proposed.
ContributorsSwoverland, Robert Bo (Author) / Milovanovic, Jelena (Thesis director) / Zicarelli, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133482-Thumbnail Image.png
Description
Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries

Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries with missing data. The new column is created to measure price difference to create a more accurate analysis on the change in price. Eight relevant variables are selected using cross validation: the total number of bitcoins, the total size of the blockchains, the hash rate, mining difficulty, revenue from mining, transaction fees, the cost of transactions and the estimated transaction volume. The in-sample data is modeled using a simple tree fit, first with one variable and then with eight. Using all eight variables, the in-sample model and data have a correlation of 0.6822657. The in-sample model is improved by first applying bootstrap aggregation (also known as bagging) to fit 400 decision trees to the in-sample data using one variable. Then the random forests technique is applied to the data using all eight variables. This results in a correlation between the model and data of 9.9443413. The random forests technique is then applied to an Ethereum dataset, resulting in a correlation of 9.6904798. Finally, an out-of-sample model is created for Bitcoin and Ethereum using random forests, with a benchmark correlation of 0.03 for financial data. The correlation between the training model and the testing data for Bitcoin was 0.06957639, while for Ethereum the correlation was -0.171125. In conclusion, it is confirmed that cryptocurrencies can have accurate in-sample models by applying the random forests method to a dataset. However, out-of-sample modeling is more difficult, but in some cases better than typical forms of financial data. It should also be noted that cryptocurrency data has similar properties to other related financial datasets, realizing future potential for system modeling for cryptocurrency within the financial world.
ContributorsBrowning, Jacob Christian (Author) / Meuth, Ryan (Thesis director) / Jones, Donald (Committee member) / McCulloch, Robert (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134976-Thumbnail Image.png
Description
Problems related to alcohol consumption cause not only extra economic expenses, but are an expense to the health of both drinkers and non-drinkers due to the harm directly and indirectly caused by alcohol consumption. Investigating predictors and reasons for alcohol-related problems is of importance, as alcohol-related problems could be prevented

Problems related to alcohol consumption cause not only extra economic expenses, but are an expense to the health of both drinkers and non-drinkers due to the harm directly and indirectly caused by alcohol consumption. Investigating predictors and reasons for alcohol-related problems is of importance, as alcohol-related problems could be prevented by quitting or limiting consumption of alcohol. We were interested in predicting alcohol-related problems using multiple linear regression and regression trees, and then comparing the regressions to the tree. Impaired control, anxiety sensitivity, mother permissiveness, father permissiveness, gender, and age were included as predictors. The data used was comprised of participants (n=835) sampled from students at Arizona State University. A multiple linear regression without interactions, multiple linear regression with two-way interactions and squares, and a regression tree were used and compared. The regression and the tree had similar results. Multiple interactions of variables predicted alcohol-related problems. Overall, the tree was easier to interpret than the regressions, however, the regressions provided specific predicted alcohol-related problems scores, whereas the tree formed large groups and had a predicted alcohol-related problems score for each group. Nevertheless, the tree still predicted alcohol-related problems nearly as well, if not better than the regressions.
ContributorsVoorhies, Kirsten Reed (Author) / McCulloch, Robert (Thesis director) / Zheng, Yi (Committee member) / Patock-Peckham, Julie (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134418-Thumbnail Image.png
Description
We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and

We seek a comprehensive measurement for the economic prosperity of persons with disabilities. We survey the current literature and identify the major economic indicators used to describe the socioeconomic standing of persons with disabilities. We then develop a methodology for constructing a statistically valid composite index of these indicators, and build this index using data from the 2014 American Community Survey. Finally, we provide context for further use and development of the index and describe an example application of the index in practice.
ContributorsTheisen, Ryan (Co-author) / Helms, Tyler (Co-author) / Lewis, Paul (Thesis director) / Reiser, Mark (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
190731-Thumbnail Image.png
Description
Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is challenging due to the intensity and inefficiency of Markov Chain

Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is challenging due to the intensity and inefficiency of Markov Chain Monte Carlo (MCMC) based Bayesian inference methods. Consequently, the first primary focus of this thesis is enhancing efficiency and scalability for UQ in inverse problems. On the other hand, the omnipresence of spatiotemporal data, particularly in areas like traffic analysis, underscores the need for effectively addressing inverse problems with spatiotemporal observations. Conventional solutions often overlook spatial or temporal correlations, resulting in underutilization of spatiotemporal interactions for parameter learning. Appropriately modeling spatiotemporal observations in inverse problems thus forms another pivotal research avenue. In terms of UQ methodologies, the calibration-emulation-sampling (CES) scheme has emerged as effective for large-dimensional problems. I introduce a novel CES approach by employing deep neural network (DNN) models during the emulation and sampling phase. This approach not only enhances computational efficiency but also diminishes sensitivity to training set variations. The newly devised “Dimension- Reduced Emulative Autoencoder Monte Carlo (DREAM)” algorithm scales Bayesian UQ up to thousands of dimensions in physics-constrained inverse problems. The algorithm’s effectiveness is exemplified through elliptic and advection-diffusion inverse problems. In the realm of spatiotemporal modeling, I propose to use Spatiotemporal Gaussian processes (STGP) in likelihood modeling and Spatiotemporal Besov processes (STBP) in prior modeling separately. These approaches highlight the efficacy of incorporat- ing spatial and temporal information for enhanced parameter estimation and UQ. Additionally, the superiority of STGP is demonstrated compared to static and time- averaged methods in time-dependent advection-diffusion partial differential equation (PDE) and three chaotic ordinary differential equations (ODE). Expanding upon Besov Process (BP), a method known for sparsity-promotion and edge-preservation, STBP is introduced to capture spatial data features and model temporal correlations by replacing the random coefficients in the series expansion with stochastic time functions following Q-exponential process(Q-EP). This advantage is showcased in dynamic computerized tomography (CT) reconstructions through comparison with classic STGP and a time-uncorrelated approach.
ContributorsLi, Shuyi (Author) / Lan, Shiwei (Thesis advisor) / Hahn, Paul (Committee member) / McCulloch, Robert (Committee member) / Dan, Cheng (Committee member) / Lopes, Hedibert (Committee member) / Arizona State University (Publisher)
Created2023
190981-Thumbnail Image.png
Description
As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged

As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged to understand loss trends, build forecasts, and study societal impacts of losses. Specifically, this work makes use of the Spatial Hazard Events and Losses Database which is an unparalleled source of loss data for the United States. The first portion of this dissertation develops accurate loss baselines that are crucial for mitigation planning, infrastructure investment, and risk communication. This is accomplished thorough a stationarity analysis of county level losses following a normalization procedure. A wide variety of studies employ loss data without addressing stationarity assumptions or the possibility for spurious regression. This work enables the statistically rigorous application of such loss time series to modeling applications. The second portion of this work develops a novel matrix variate dynamic factor model for spatio-temporal loss data stratified across multiple correlated hazards or perils. The developed model is employed to analyze and forecast losses from convective storms, which constitute some of the highest losses covered by insurers. Adopting factor-based approach, forecasts are achieved despite the complex and often unobserved underlying drivers of these losses. The developed methodology extends the literature on dynamic factor models to matrix variate time series. Specifically, a covariance structure is imposed that is well suited to spatio-temporal problems while significantly reducing model complexity. The model is fit via the EM algorithm and Kalman filter. The third and final part of this dissertation investigates the impact of compounding hazard events on state and regional migration in the United States. Any attempt to capture trends in climate related migration must account for the inherent uncertainties surrounding climate change, natural hazard occurrences, and socioeconomic factors. For this reason, I adopt a Bayesian modeling approach that enables the explicit estimation of the inherent uncertainty. This work can provide decision-makers with greater clarity regarding the extent of knowledge on climate trends.
ContributorsBoyle, Esther Sarai (Author) / Jevtic, Petar (Thesis advisor) / Lanchier, Nicolas (Thesis advisor) / Lan, Shiwei (Committee member) / Cheng, Dan (Committee member) / Fricks, John (Committee member) / Gall, Melanie (Committee member) / Cutter, Susan (Committee member) / McNicholas, Paul (Committee member) / Arizona State University (Publisher)
Created2023