Matching Items (68)
Filtering by

Clear all filters

150135-Thumbnail Image.png
Description
It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among

It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among multi-categorical variables. Pearson's chi-squared statistic is well-known in goodness-of-fit testing, but it is sometimes considered to produce an omnibus test as it gives little guidance to the source of poor fit once the null hypothesis is rejected. However, its components can provide powerful directional tests. In this dissertation, orthogonal components are used to develop goodness-of-fit tests for models fit to the counts obtained from the cross-classification of multi-category dependent variables. Ordinal categories are assumed. Orthogonal components defined on marginals are obtained when analyzing multi-dimensional contingency tables through the use of the QR decomposition. A subset of these orthogonal components can be used to construct limited-information tests that allow one to identify the source of lack-of-fit and provide an increase in power compared to Pearson's test. These tests can address the adverse effects presented when data are sparse. The tests rely on the set of first- and second-order marginals jointly, the set of second-order marginals only, and the random forest method, a popular algorithm for modeling large complex data sets. The performance of these tests is compared to the likelihood ratio test as well as to tests based on orthogonal polynomial components. The derived goodness-of-fit tests are evaluated with studies for detecting two- and three-way associations that are not accounted for by a categorical variable factor model with a single latent variable. In addition the tests are used to investigate the case when the model misspecification involves parameter constraints for large and sparse contingency tables. The methodology proposed here is applied to data from the 38th round of the State Survey conducted by the Institute for Public Policy and Michigan State University Social Research (2005) . The results illustrate the use of the proposed techniques in the context of a sparse data set.
ContributorsMilovanovic, Jelena (Author) / Young, Dennis (Thesis advisor) / Reiser, Mark R. (Thesis advisor) / Wilson, Jeffrey (Committee member) / Eubank, Randall (Committee member) / Yang, Yan (Committee member) / Arizona State University (Publisher)
Created2011
151976-Thumbnail Image.png
Description
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.
ContributorsIsmay, Chester (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
150996-Thumbnail Image.png
Description
A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis

A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis (RMA) regression and is often used instead of Ordinary Least Squares (OLS) regression. Results for confidence intervals, hypothesis testing and asymptotic distributions of coefficient estimates in the bivariate case are reviewed. A generalization of RMA to more than two variables for fitting a plane to data is obtained by minimizing the sum of a function of the volumes obtained by drawing, from each data point, lines parallel to each coordinate axis to the fitted plane (Draper and Yang 1997; Goodman and Tofallis 2003). Generalized RMA results for the multivariate case obtained by Draper and Yang (1997) are reviewed and some investigations of multivariate RMA are given. A linear model is proposed that does not specify a dependent variable and allows for errors in the measurement of each variable. Coefficients in the model are estimated by minimization of the function of the volumes previously mentioned. Methods for obtaining coefficient estimates are discussed and simulations are used to investigate the distribution of coefficient estimates. The effects of sample size, sampling error and correlation among variables on the estimates are studied. Bootstrap methods are used to obtain confidence intervals for model coefficients. Residual analysis is considered for assessing model assumptions. Outlier and influential case diagnostics are developed and a forward selection method is proposed for subset selection of model variables. A real data example is provided that uses the methods developed. Topics for further research are discussed.
ContributorsLi, Jingjin (Author) / Young, Dennis (Thesis advisor) / Eubank, Randall (Thesis advisor) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Yang, Yan (Committee member) / Arizona State University (Publisher)
Created2012
151128-Thumbnail Image.png
Description
This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection in the case of nonnormal data and (iii) formulation of a partial canonical correlation concept for continuous time stochastic processes. The finite dimensional SVD has an infinite dimensional generalization to compact operators. However, the form of the finite dimensional GSVD developed in, e.g., Van Loan does not extend directly to infinite dimensions as a result of a key step in the proof that is specific to the matrix case. Thus, the first problem of interest is to find an infinite dimensional version of the GSVD. One such GSVE for compact operators on separable Hilbert spaces is developed. The second problem concerns regularization parameter estimation. The chi-squared method for nonnormal data is considered. A form of the optimized regularization criterion that pertains to measured data or signals with nonnormal noise is derived. Large sample theory for phi-mixing processes is used to derive a central limit theorem for the chi-squared criterion that holds under certain conditions. Departures from normality are seen to manifest in the need for a possibly different scale factor in normalization rather than what would be used under the assumption of normality. The consequences of our large sample work are illustrated by empirical experiments. For the third problem, a new approach is examined for studying the relationships between a collection of functional random variables. The idea is based on the work of Sunder that provides mappings to connect the elements of algebraic and orthogonal direct sums of subspaces in a Hilbert space. When combined with a key isometry associated with a particular Hilbert space indexed stochastic process, this leads to a useful formulation for situations that involve the study of several second order processes. In particular, using our approach with two processes provides an independent derivation of the functional canonical correlation analysis (CCA) results of Eubank and Hsing. For more than two processes, a rigorous derivation of the functional partial canonical correlation analysis (PCCA) concept that applies to both finite and infinite dimensional settings is obtained.
ContributorsHuang, Qing (Author) / Eubank, Randall (Thesis advisor) / Renaut, Rosemary (Thesis advisor) / Cochran, Douglas (Committee member) / Gelb, Anne (Committee member) / Young, Dennis (Committee member) / Arizona State University (Publisher)
Created2012
149443-Thumbnail Image.png
Description
Public health surveillance is a special case of the general problem where counts (or rates) of events are monitored for changes. Modern data complements event counts with many additional measurements (such as geographic, demographic, and others) that comprise high-dimensional covariates. This leads to an important challenge to detect a change

Public health surveillance is a special case of the general problem where counts (or rates) of events are monitored for changes. Modern data complements event counts with many additional measurements (such as geographic, demographic, and others) that comprise high-dimensional covariates. This leads to an important challenge to detect a change that only occurs within a region, initially unspecified, defined by these covariates. Current methods are typically limited to spatial and/or temporal covariate information and often fail to use all the information available in modern data that can be paramount in unveiling these subtle changes. Additional complexities associated with modern health data that are often not accounted for by traditional methods include: covariates of mixed type, missing values, and high-order interactions among covariates. This work proposes a transform of public health surveillance to supervised learning, so that an appropriate learner can inherently address all the complexities described previously. At the same time, quantitative measures from the learner can be used to define signal criteria to detect changes in rates of events. A Feature Selection (FS) method is used to identify covariates that contribute to a model and to generate a signal. A measure of statistical significance is included to control false alarms. An alternative Percentile method identifies the specific cases that lead to changes using class probability estimates from tree-based ensembles. This second method is intended to be less computationally intensive and significantly simpler to implement. Finally, a third method labeled Rule-Based Feature Value Selection (RBFVS) is proposed for identifying the specific regions in high-dimensional space where the changes are occurring. Results on simulated examples are used to compare the FS method and the Percentile method. Note this work emphasizes the application of the proposed methods on public health surveillance. Nonetheless, these methods can easily be extended to a variety of applications where counts (or rates) of events are monitored for changes. Such problems commonly occur in domains such as manufacturing, economics, environmental systems, engineering, as well as in public health.
ContributorsDavila, Saylisse (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Young, Dennis (Committee member) / Gel, Esma (Committee member) / Arizona State University (Publisher)
Created2010
134937-Thumbnail Image.png
Description
Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not

Several studies on cheerleading as a sport can be found in the literature; however, there is no research done on the value added to the experience at a university, to an athletic department or at a particular sport. It has been the feeling that collegiate and professional cheerleaders are not given the appropriate recognition nor credit for the amount of work they do. This contribution is sometimes in question as it depends on the school and the sports teams. The benefits are believed to vary based on the university or professional teams. This research investigated how collegiate cheerleaders and dancers add value to the university sport experience. We interviewed key personnel at the university and conference level and polled spectators at sporting events such as basketball and football. We found that the university administration and athletic personnel see the ASU Spirit Squad as value added but spectators had a totally different perspective. The university acknowledges the added value of the Spirit Squad and its necessity. Spectators attend ASU sporting events to support the university and for the entertainment. They enjoy watching the ASU Spirit Squad perform but would continue to attend ASU sporting events even if cheerleaders and dancers were not there.
ContributorsThomas, Jessica Ann (Author) / Wilson, Jeffrey (Thesis director) / Garner, Deana (Committee member) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
152189-Thumbnail Image.png
Description
This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’

This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’ test scores as outcome variables and teachers’ contributions as random effects to ascribe changes in student performance to the teachers who have taught them. The VAMs teacher score is the empirical best linear unbiased predictor (EBLUP). This approach is limited by the adequacy of the assumed model specification with respect to the unknown underlying model. In that regard, this study proposes alternative ways to rank teacher effects that are not dependent on a given model by introducing two variable importance measures (VIMs), the node-proportion and the covariate-proportion. These VIMs are novel because they take into account the final configuration of the terminal nodes in the constitutive trees in a random forest. In a simulation study, under a variety of conditions, true rankings of teacher effects are compared with estimated rankings obtained using three sources: the newly proposed VIMs, existing VIMs, and EBLUPs from the assumed linear model specification. The newly proposed VIMs outperform all others in various scenarios where the model was misspecified. The second study develops two novel interaction measures. These measures could be used within but are not restricted to the VAM framework. The distribution-based measure is constructed to identify interactions in a general setting where a model specification is not assumed in advance. In turn, the mean-based measure is built to estimate interactions when the model specification is assumed to be linear. Both measures are unique in their construction; they take into account not only the outcome values, but also the internal structure of the trees in a random forest. In a separate simulation study, under a variety of conditions, the proposed measures are found to identify and estimate second-order interactions.
ContributorsValdivia, Arturo (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Reiser, Mark R. (Committee member) / Kao, Ming-Hung (Committee member) / Broatch, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
171778-Thumbnail Image.png
Description
Honeypots – cyber deception technique used to lure attackers into a trap. They contain fake confidential information to make an attacker believe that their attack has been successful. One of the prerequisites for a honeypot to be effective is that it needs to be undetectable. Deploying sniffing and event logging

Honeypots – cyber deception technique used to lure attackers into a trap. They contain fake confidential information to make an attacker believe that their attack has been successful. One of the prerequisites for a honeypot to be effective is that it needs to be undetectable. Deploying sniffing and event logging tools alongside the honeypot also helps understand the mindset of the attacker after successful attacks. Is there any data that backs up the claim that honeypots are effective in real life scenarios? The answer is no.Game-theoretic models have been helpful to approximate attacker and defender actions in cyber security. However, in the past these models have relied on expert- created data. The goal of this research project is to determine the effectiveness of honeypots using real-world data. So, how to deploy effective honeypots? This is where honey-patches come into play. Honey-patches are software patches designed to hinder the attacker’s ability to determine whether an attack has been successful or not. When an attacker launches a successful attack on a software, the honey-patch transparently redirects the attacker into a honeypot. The honeypot contains fake information which makes the attacker believe they were successful while in reality they were not. After conducting a series of experiments and analyzing the results, there is a clear indication that honey-patches are not the perfect application security solution having both pros and cons.
ContributorsChauhan, Purv Rakeshkumar (Author) / Doupe, Adam (Thesis advisor) / Bao, Youzhi (Committee member) / Wang, Ruoyu (Committee member) / Arizona State University (Publisher)
Created2022
190728-Thumbnail Image.png
Description
Human civilization within the last two decades has largely transformed into an online one, with many of its associated activities taking place on computers and complex networked systems -- their analog and real-world equivalents having been rendered obsolete.These activities run the gamut from the ordinary and mundane, like ordering food,

Human civilization within the last two decades has largely transformed into an online one, with many of its associated activities taking place on computers and complex networked systems -- their analog and real-world equivalents having been rendered obsolete.These activities run the gamut from the ordinary and mundane, like ordering food, to complex and large-scale, such as those involving critical infrastructure or global trade and communications. Unfortunately, the activities of human civilization also involve criminal, adversarial, and malicious ones with the result that they also now have their digital equivalents. Ransomware, malware, and targeted cyberattacks are a fact of life today and are instigated not only by organized criminal gangs, but adversarial nation-states and organizations as well. Needless to say, such actions result in disastrous and harmful real-world consequences. As the complexity and variety of software has evolved, so too has the ingenuity of attacks that exploit them; for example modern cyberattacks typically involve sequential exploitation of multiple software vulnerabilities.Compared to a decade ago, modern software stacks on personal computers, laptops, servers, mobile phones, and even Internet of Things (IoT) devices involve a dizzying array of interdependent programs and software libraries, with each of these components presenting attractive attack-surfaces for adversarial actors. However, the responses to this still rely on paradigms that can neither react quickly enough nor scale to increasingly dynamic, ever-changing, and complex software environments. Better approaches are therefore needed, that can assess system readiness and vulnerabilities, identify potential attack vectors and strategies (including ways to counter them), and proactively detect vulnerabilities in complex software before they can be exploited. In this dissertation, I first present a mathematical model and associated algorithms to identify attacker strategies for sequential cyberattacks based on attacker state, attributes and publicly-available vulnerability information.Second, I extend the model and design algorithms to help identify defensive courses of action against attacker strategies. Finally, I present my work to enhance the ability of coverage-based fuzzers to identify software vulnerabilities by providing visibility into complex, internal program-states.
ContributorsPaliath, Vivin Suresh (Author) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Thesis advisor) / Wang, Ruoyu (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2023
190944-Thumbnail Image.png
Description
The rise in popularity of applications and services that charge for access to proprietary trained models has led to increased interest in the robustness of these models and the security of the environments in which inference is conducted. State-of-the-art attacks extract models and generate adversarial examples by inferring relationships between

The rise in popularity of applications and services that charge for access to proprietary trained models has led to increased interest in the robustness of these models and the security of the environments in which inference is conducted. State-of-the-art attacks extract models and generate adversarial examples by inferring relationships between a model’s input and output. Popular variants of these attacks have been shown to be deterred by countermeasures that poison predicted class distributions and mask class boundary gradients. Neural networks are also vulnerable to timing side-channel attacks. This work builds on top of Subneural, an attack framework that uses floating point timing side channels to extract neural structures. Novel applications of addition timing side channels are introduced, allowing the signs and arrangements of leaked parameters to be discerned more efficiently. Addition timing is also used to leak network biases, making the framework applicable to a wider range of targets. The enhanced framework is shown to be effective against models protected by prediction poisoning and gradient masking adversarial countermeasures and to be competitive with adaptive black box adversarial attacks against stateful defenses. Mitigations necessary to protect against floating-point timing side-channel attacks are also presented.
ContributorsVipat, Gaurav (Author) / Shoshitaishvili, Yan (Thesis advisor) / Doupe, Adam (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2023