Matching Items (2)
Filtering by

Clear all filters

171878-Thumbnail Image.png
Description
The COVID-19 outbreak that started in 2020, brought the world to its knees and is still a menace after three years. Over eighty-five million cases and over a million deaths have occurred due to COVID-19 during that time in the United States alone. A great deal of research has gone

The COVID-19 outbreak that started in 2020, brought the world to its knees and is still a menace after three years. Over eighty-five million cases and over a million deaths have occurred due to COVID-19 during that time in the United States alone. A great deal of research has gone into making epidemic models to show the impact of the virus by plotting the cases, deaths, and hospitalization due to COVID-19. However, there is very less research that has anything to do with mapping different variants of COVID-19. SARS-CoV-2, the virus that causes COVID-19, constantly mutates and multiple variants have emerged over time. The major variants include Beta, Gamma, Delta and the recent one, Omicron. The purpose of the research done in this thesis is to modify one of the epidemic models i.e., the Spatially Informed Rapid Testing for Epidemic Model (SIRTEM), in such a way that various variants of the virus will be modelled at the same time. The model will be assessed by adding the Omicron and the Delta variants and in doing so, the effects of different variants can be studied by looking at the positive cases, hospitalizations, and deaths from both the variants for the Arizona Population. The focus will be to find the best infection rate and testing rate by using Random numbers so that the published positive cases and the positive cases derived from the model have the least mean square error.
ContributorsVarghese, Allen Moncey (Author) / Pedrielli, Giulia (Thesis advisor) / Candan, Kasim S (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
161302-Thumbnail Image.png
Description
Spatial data is fundamental in many applications like map services, land resource management, etc. Meanwhile, spatial data inherently comes with abundant context information because spatial entities themselves possess different properties, e.g., graph or textual information, etc. Among all these compound spatial data, geospatial graph data is one of the most

Spatial data is fundamental in many applications like map services, land resource management, etc. Meanwhile, spatial data inherently comes with abundant context information because spatial entities themselves possess different properties, e.g., graph or textual information, etc. Among all these compound spatial data, geospatial graph data is one of the most challenging for the complexity of graph data. Graph data is commonly used to model real scenarios and searching for the matching subgraphs is fundamental in retrieving and analyzing graph data. With the ubiquity of spatial data, vertexes or edges in graphs are enriched with spatial location attributes side by side with other non-spatial attributes. Graph-based applications integrate spatial data into the graph model and provide more spatial-aware services. The co-existence of the graph and spatial data in the same geospatial graph triggers some new applications. To solve new problems in these applications, existing solutions develop an integrated system that incorporates the graph database and spatial database engines. However, existing approaches suffer from the architecture where graph data and spatial data are isolated. In this dissertation, I will explain two indexing frameworks, GeoReach and RisoTree, which can significantly accelerate the queries in geospatial graphs. GeoReach includes a query operator that adds spatial data awareness to a graph database management system. In GeoReach, the neighborhood spatial information is summarized and stored on each vertex in the graph. The summarization includes three different structures according to the location distribution. These spatial summaries are utilized to terminate the graph search early.RisoTree is a hierarchical tree structure where each node is represented by a minimum bounding rectangle (MBR). The MBR of a node is a rectangle that encloses all its children. A key difference between RisoTree and RTree is that RisoTree contains pre-materialized subgraph information to each index node. The subgraph information is utilized during the spatial index search phase to prune search paths that cannot satisfy the query graph pattern. The RisoTree index reduces the search space when the spatial filtering phase is performed with relatively light cost.
ContributorsSun, Yuhan (Author) / Sarwat, Mohamed (Thesis advisor) / Tong, Hanghang (Committee member) / Candan, Kasim S (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2021