Matching Items (16)
Filtering by

Clear all filters

190865-Thumbnail Image.png
Description
This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF)

This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF) model handles variance via a group-specific parameter, and the Heteroskedastic version of XBCF (H-XBCF) uses a separate tree ensemble to learn covariate-dependent variance. This work also contributes to the field of survival analysis by proposing a new framework for estimating survival probabilities via density regression. Within this framework, the Heteroskedastic Accelerated Bayesian Additive Regression Trees (H-XBART) model, which is also developed as part of this work, is utilized in treatment effect estimation for right-censored survival outcomes. All models have been implemented as part of the XBART R package, and their performance is evaluated via extensive simulation studies with appropriate sets of comparators. The contributed methods achieve similar levels of performance, while being orders of magnitude (sometimes as much as 100x) faster than comparator state-of-the-art methods, thus offering an exciting opportunity for treatment effect estimation in the large data setting.
ContributorsKrantsevich, Nikolay (Author) / Hahn, P Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Lan, Shiwei (Committee member) / He, Jingyu (Committee member) / Arizona State University (Publisher)
Created2023
171927-Thumbnail Image.png
Description
Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems.

Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems. Eilertson et al. (2019) propose using a state-space model combined with maximum likelihood methods for estimating measles transmission. A Bayesian approach that uses particle Markov Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-linear state-space model developed in Eilertson et al. (2019) and similar previous studies. This dissertation illustrates the performance of this approach by calculating posterior estimates of the model parameters and predictions of the unobserved states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a support method to verify the Bayesian estimation and to inform the selection of prior distributions. In the second half of the thesis, a birth-death process is proposed to model the unobserved population size of a disease vector. This model studies the effect of a disease vector population size on a second affected population. The second population follows a non-homogenous Poisson process when conditioned on the vector process with a transition rate given by a scaled version of the vector population. The observation model also measures a potential threshold event when the host species population size surpasses a certain level yielding a higher transmission rate. A maximum likelihood procedure is developed for this model, which combines particle filtering with the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al. (2014).
ContributorsMartinez Rivera, Wilmer Osvaldo (Author) / Fricks, John (Thesis advisor) / Reiser, Mark (Committee member) / Zhou, Shuang (Committee member) / Cheng, Dan (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2022
161801-Thumbnail Image.png
Description
High-dimensional data is omnipresent in modern industrial systems. An imaging sensor in a manufacturing plant a can take images of millions of pixels or a sensor may collect months of data at very granular time steps. Dimensionality reduction techniques are commonly used for dealing with such data. In addition, outliers

High-dimensional data is omnipresent in modern industrial systems. An imaging sensor in a manufacturing plant a can take images of millions of pixels or a sensor may collect months of data at very granular time steps. Dimensionality reduction techniques are commonly used for dealing with such data. In addition, outliers typically exist in such data, which may be of direct or indirect interest given the nature of the problem that is being solved. Current research does not address the interdependent nature of dimensionality reduction and outliers. Some works ignore the existence of outliers altogether—which discredits the robustness of these methods in real life—while others provide suboptimal, often band-aid solutions. In this dissertation, I propose novel methods to achieve outlier-awareness in various dimensionality reduction methods. The problem is considered from many different angles depend- ing on the dimensionality reduction technique used (e.g., deep autoencoder, tensors), the nature of the application (e.g., manufacturing, transportation) and the outlier structure (e.g., sparse point anomalies, novelties).
ContributorsSergin, Nurettin Dorukhan (Author) / Yan, Hao (Thesis advisor) / Li, Jing (Committee member) / Wu, Teresa (Committee member) / Tsung, Fugee (Committee member) / Arizona State University (Publisher)
Created2021
187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
ContributorsHerren, Andrew (Author) / Hahn, P Richard (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lopes, Hedibert (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2023
187395-Thumbnail Image.png
Description
This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of

This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of novel “reduced form” models which are designed to assess the particular challenges of different datasets. Chapter 3 explores the question of whether or not forecasts of bankruptcy cause bankruptcy. The question arises from the observation that companies issued going concern opinions were more likely to go bankrupt in the following year, leading people to speculate that the opinions themselves caused the bankruptcy via a “self-fulfilling prophecy”. A Bayesian machine learning sensitivity analysis is developed to answer this question. In exchange for additional flexibility and fewer assumptions, this approach loses point identification of causal effects and thus a sensitivity analysis is developed to study a wide range of plausible scenarios of the causal effect of going concern opinions on bankruptcy. Reported in the simulations are different performance metrics of the model in comparison with other popular methods and a robust analysis of the sensitivity of the model to mis-specification. Results on empirical data indicate that forecasts of bankruptcies likely do have a small causal effect. Chapter 4 studies the effects of vaccination on COVID-19 mortality at the state level in the United States. The dynamic nature of the pandemic complicates more straightforward regression adjustments and invalidates many alternative models. The chapter comments on the limitations of mechanistic approaches as well as traditional statistical methods to epidemiological data. Instead, a state space model is developed that allows the study of the ever-changing dynamics of the pandemic’s progression. In the first stage, the model decomposes the observed mortality data into component surges, and later uses this information in a semi-parametric regression model for causal analysis. Results are investigated thoroughly for empirical justification and stress-tested in simulated settings.
ContributorsPapakostas, Demetrios (Author) / Hahn, Paul (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Kao, Ming-Hung (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2023
191496-Thumbnail Image.png
Description
This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART

This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART trees. This allows for extrapolation based on the most relevant data points and covariate variables determined by the trees' structure. The local GP technique is extended to the Bayesian causal forest (BCF) models to address the positivity violation issue in causal inference. Additionally, I introduce the LongBet model to estimate time-varying, heterogeneous treatment effects in panel data. Furthermore, I present a Poisson-based model, with a modified likelihood for XBART for the multi-class classification problem.
ContributorsWang, Meijia (Author) / Hahn, Paul (Thesis advisor) / He, Jingyu (Committee member) / Lan, Shiwei (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2024
156932-Thumbnail Image.png
Description
Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma.

The first topic is a Mixed Effects Transfer Learning (METL) model that can flexibly incorporate mixed effects and a general-form covariance matrix to better account for similarity and heterogeneity across subjects. I further develop computationally efficient procedures to handle unknown parameters and large covariance structures. Domain relations, such as domain similarity and domain covariance structure, are automatically quantified in the estimation steps. I demonstrate METL in an application of smartphone-based telemonitoring of PD.

The second topic focuses on an MRI-based transfer learning algorithm for non-invasive surgical guidance of glioblastoma patients. Limited biopsy samples per patient create a challenge to build a patient-specific model for glioblastoma. A transfer learning framework helps to leverage other patient’s knowledge for building a better predictive model. When modeling a target patient, not every patient’s information is helpful. Deciding the subset of other patients from which to transfer information to the modeling of the target patient is an important task to build an accurate predictive model. I define the subset of “transferrable” patients as those who have a positive rCBV-cell density correlation, because a positive correlation is confirmed by imaging theory and the its respective literature.

The last topic is a Privacy-Preserving Positive Transfer Learning (P3TL) model. Although negative transfer has been recognized as an important issue by the transfer learning research community, there is a lack of theoretical studies in evaluating the risk of negative transfer for a transfer learning method and identifying what causes the negative transfer. My work addresses this issue. Driven by the theoretical insights, I extend Bayesian Parameter Transfer (BPT) to a new method, i.e., P3TL. The unique features of P3TL include intelligent selection of patients to transfer in order to avoid negative transfer and maintain patient privacy. These features make P3TL an excellent model for telemonitoring of PD using an At-Home Testing Device.
ContributorsYoon, Hyunsoo (Author) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Yan, Hao (Committee member) / Hu, Leland S. (Committee member) / Arizona State University (Publisher)
Created2018
156053-Thumbnail Image.png
Description
Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster

Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster analysis to create product profiles based on which customer profiles are derived. Phase-2 then delves deep into each of the customer profiles and investigates causality behind their preference using Bayesian networks. This thesis illustrates the working of the framework using the case of Intel Corporation, world’s largest semiconductor manufacturing company.
ContributorsRam, Sudarshan Venkat (Author) / Kempf, Karl G. (Thesis advisor) / Wu, Teresa (Thesis advisor) / Ju, Feng (Committee member) / Arizona State University (Publisher)
Created2017
158338-Thumbnail Image.png
Description
Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and discover unknown surface microstructures/anomalies. To achieve this, a Hidden Markov

Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and discover unknown surface microstructures/anomalies. To achieve this, a Hidden Markov Model is developed to consider the temporal dependency of the high-resolution AE data. Furthermore, the posterior classification probability and the negative likelihood score for microstructure classification and discovery are computed. Subsequently, a diagnostic procedure to identify the dominant AE frequencies that were used to track the microstructural characteristics is presented. In addition, machine learning methods such as KNN, Naive Bayes, and Logistic Regression classifiers are applied. Finally, the proposed approach applied to identify the surface microstructures of additively manufactured Ti-6Al-4V and show that it not only achieved a high classification accuracy (e.g., more than 90\%) but also correctly identified the microstructural anomalies that may be subjected to further investigation to discover new material phases/properties.
ContributorsSun, Huifeng (Author) / Yan, Hao (Thesis advisor) / Fricks, John (Thesis advisor) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2020
158208-Thumbnail Image.png
Description
Functional regression models are widely considered in practice. To precisely understand an underlying functional mechanism, a good sampling schedule for collecting informative functional data is necessary, especially when data collection is limited. However, scarce research has been conducted on the optimal sampling schedule design for the functional regression model so

Functional regression models are widely considered in practice. To precisely understand an underlying functional mechanism, a good sampling schedule for collecting informative functional data is necessary, especially when data collection is limited. However, scarce research has been conducted on the optimal sampling schedule design for the functional regression model so far. To address this design issue, efficient approaches are proposed for generating the best sampling plan in the functional regression setting. First, three optimal experimental designs are considered under a function-on-function linear model: the schedule that maximizes the relative efficiency for recovering the predictor function, the schedule that maximizes the relative efficiency for predicting the response function, and the schedule that maximizes the mixture of the relative efficiencies of both the predictor and response functions. The obtained sampling plan allows a precise recovery of the predictor function and a precise prediction of the response function. The proposed approach can also be reduced to identify the optimal sampling plan for the problem with a scalar-on-function linear regression model. In addition, the optimality criterion on predicting a scalar response using a functional predictor is derived when the quadratic relationship between these two variables is present, and proofs of important properties of the derived optimality criterion are also provided. To find such designs, an algorithm that is comparably fast, and can generate nearly optimal designs is proposed. As the optimality criterion includes quantities that must be estimated from prior knowledge (e.g., a pilot study), the effectiveness of the suggested optimal design highly depends on the quality of the estimates. However, in many situations, the estimates are unreliable; thus, a bootstrap aggregating (bagging) approach is employed for enhancing the quality of estimates and for finding sampling schedules stable to the misspecification of estimates. Through case studies, it is demonstrated that the proposed designs outperform other designs in terms of accurately predicting the response and recovering the predictor. It is also proposed that bagging-enhanced design generates a more robust sampling design under the misspecification of estimated quantities.
ContributorsRha, Hyungmin (Author) / Kao, Ming-Hung (Thesis advisor) / Pan, Rong (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2020