Matching Items (12)
Filtering by

Clear all filters

152040-Thumbnail Image.png
Description
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small

"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D; developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I_3^-+2e^___3I^-, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s^2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 ug/sqrt(Hz) at 20 Hz.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Kozicki, Micheal (Committee member) / Arizona State University (Publisher)
Created2013
151565-Thumbnail Image.png
Description
Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size,

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size, low power consumption, and robustness. There were two main objectives of the research conducted. The first objective was to design, fabricate, and test novel sensors that measure the amount of exposure to ionizing radiation for a wide range of applications including characterization of harsh environments. Two types of MEMS ionizing radiation dosimeters were developed. The first sensor was a passive radiation-sensitive capacitor-antenna design. The antenna's emitted frequency of peak-intensity changed as exposure time to radiation increased. The second sensor was a film bulk acoustic-wave resonator, whose resonant frequency decreased with increasing ionizing radiation exposure time. The second objective was to develop MEMS sensor systems that could be deployed to gather scientific data and to use that data to address the following research question: do temperature and/or conductivity predict the appearance of photosynthetic organisms in hot springs. To this end, temperature and electrical conductivity sensor arrays were designed and fabricated based on mature MEMS technology. Electronic circuits and the software interface to the electronics were developed for field data collection. The sensor arrays utilized in the hot springs yielded results that support the hypothesis that temperature plays a key role in determining where the photosynthetic organisms occur. Additionally, a cold-film fluidic flow sensor was developed, which is suitable for near-boiling temperature measurement. Future research should focus on (1) developing a MEMS pH sensor array with integrated temperature, conductivity, and flow sensors to provide multi-dimensional data for scientific study and (2) finding solutions to biofouling and self-calibration, which affects sensor performance over long-term deployment.
ContributorsOiler, Jonathon (Author) / Yu, Hongyu (Thesis advisor) / Anbar, Ariel (Committee member) / Hartnett, Hilairy (Committee member) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2013
152492-Thumbnail Image.png
Description
This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte

This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte between electrodes by converting it to the output current. MET seismometers have advantages of high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 1μm, which improves the sensitivity of fabricated device to above 3000 V/(m/s^2) under operating bias of 600 mV and input acceleration of 400 μG (G=9.81m/s^2) at 0.32 Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -127 dB equivalent to 44 nG/√Hz at 1 Hz. An alternative approach to build the sensing element of MEMS MET seismometer using SOI process is also presented in this thesis. The significantly increased number of channels is expected to improve the noise performance. Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is developed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet encapsulated by oil film. The fabrication process does not involve focused ion beam milling which is used in the micro MET seismometer fabrication, thus the cost is lowered. Furthermore, the planar structure and the novel idea of using an oil film as the sealing diaphragm eliminate the complicated three-dimensional packaging of the seismometer. The fabricated device achieves 10.8 V/G sensitivity at 20 Hz with nearly flat response over the frequency range from 1 Hz to 50 Hz, and a low noise floor of 75 μG/√Hz at 20 Hz.
ContributorsHuang, Hai (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014
152472-Thumbnail Image.png
Description
ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.
ContributorsSun, Tianwei (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2014
153028-Thumbnail Image.png
Description
This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and

This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and a wide variety of devices have been fabricated. One traditional way is to directly fabricate electronic devices on flexible substrate through low-temperature processes. These devices suffered from constrained functionality due to the temperature limit. Another transfer printing approach has been developed recently. The general idea is to fabricate functional devices on hard and planar substrates using standard processes then transferred by elastomeric stamps and printed on desired flexible and stretchable substrates. The main disadvantages are that the transfer printing step may limit the yield. The third method is "flexible skins" which silicon substrates are thinned down and structured into islands and sandwiched by two layers of polymer. The main advantage of this method is post CMOS compatible. Based on this technology, we successfully fabricated a 3-D flexible thermal sensor for intravascular flow monitoring. The final product of the 3-D sensor has three independent sensing elements equally distributed around the wall of catheter (1.2 mm in diameter) with 120° spacing. This structure introduces three independent information channels, and cross-comparisons among all readings were utilized to eliminate experimental error and provide better measurement results. The novel fabrication and assembly technology can also be applied to other catheter based biomedical devices. A step forward inspired by the ancient art of folding, origami, which creating three-dimensional (3-D) structures from two-dimensional (2-D) sheets through a high degree of folding along the creases. Based on this idea, we developed a novel method to enable better deformability. One example is origami-enabled silicon solar cells. The solar panel can reach up to 644% areal compactness while maintain reasonable good performance (less than 30% output power density drop) upon 40 times cyclic folding/unfolding. This approach can be readily applied to other functional devices, ranging from sensors, displays, antenna, to energy storage devices.
ContributorsTang, Rui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Pan, George (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
150758-Thumbnail Image.png
Description
Microelectrodes have been used as the neural interface to record brain's neural activities. Most of these electrodes are fixed positioned. Neural signal normally degrades over time due to the body immune response and brain micromotion that move the neurons away from the microelectrode. MEMS technology under SUMMiT VTM processes has

Microelectrodes have been used as the neural interface to record brain's neural activities. Most of these electrodes are fixed positioned. Neural signal normally degrades over time due to the body immune response and brain micromotion that move the neurons away from the microelectrode. MEMS technology under SUMMiT VTM processes has developed miniaturized version of moveable microelectrodes that have the ability to recover the neural signal degradation by searching new cluster of neurons. To move the MEMS microelectrode a combination of four voltage waveforms must be applied to four thermally actuated microactuators. Previous design has used OmneticTM interconnect to transfer the waveforms from the external signal generators to the MEMS device. Unfortunately, the mechanism to attach and detach the OmneticTM interconnect introduce mechanical stress into the brain tissue that often caused raptures in the blood vessel. The goal of this project is to create an integrated System-On-Package Signal Generator that can be implanted on the brain of a rodent. A wireless system and a microcontroller are integrated together with the signal generators. The integrated system can be used to generate a series of voltage waveforms that can be customized to drive an array of MEMS movable microelectrodes when a triggered signal is received wirelessly. 3D stacking technique has been used to develop this Integrated System. 3D stacks lead to several favorable factors, such as (a) reduction in the power consumption of the system, (b) reduction in the overall form-factor of the package, and (c) significant reduction the weight of the package. There are a few challenges that must be overcome in this project, such as a commercially available microcontroller normally have an output voltage of 3.3 V to 5.5 V; however, a voltage of 7 - 8V is required to move the MEMS movable microelectrodes. To acquire higher density neural recording, more number of microelectrodes are needed. In this project, SoP Signal Generator is design to drive independently 3 moveable microelectrodes. Therefore, 12 voltage waveform are required. . However, the use of 12 signal generators is not a workable option since the system will be significantly large. This brings us to the other challenge, the limiting size of the rodent brain. Due to this factor, the SoP Signal Generator has to be deisgned to be able to fit without causing much pressure to the rodent's brain. For the first challenge, which is the limited output voltage of 3.3V on the microcontroller, the RC555 timers are used as an amplifier in addition to generating the signals. Demultiplexers have been for the next challenge, which is the need of 24 waveforms to drive 3 electrodes. For each waveform, 1 demultiplexer is used, making a total of 4 demultiplexers used in the entire system, which is a significant improvement from using 12 signal generators. The last challenge can be approached using 3D system stacking technique as mentioned above. The research aims of this project can be described as follows: (1) the testing and realization of the system part, and the designing of the system in a PCB level, (2) implementing and testing the SoP Signal Generator with the MEMS movable microelectrodes, The final outcome of this project can be used not only for neural applications, but also for more general applications that requires customized signal generations and wireless data transmission.
ContributorsTee, Zikai (Author) / Muthuswamy, Jitendran (Thesis advisor) / Sutanto, Jemmy (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2012
150768-Thumbnail Image.png
Description
There is a tremendous need for wireless biological signals acquisition for the microelectrode-based neural interface to reduce the mechanical impacts introduced by wire-interconnects system. Long wire connections impede the ability to continuously record the neural signal for chronic application from the rodent's brain. Furthermore, connecting and/or disconnecting Omnetics interconnects often

There is a tremendous need for wireless biological signals acquisition for the microelectrode-based neural interface to reduce the mechanical impacts introduced by wire-interconnects system. Long wire connections impede the ability to continuously record the neural signal for chronic application from the rodent's brain. Furthermore, connecting and/or disconnecting Omnetics interconnects often introduces mechanical stress which causes blood vessel to rupture and leads to trauma to the brain tissue. Following the initial implantation trauma, glial tissue formation around the microelectrode and may possibly lead to the microelectrode signal degradation. The aim of this project is to design, develop, and test a compact and power efficient integrated system (IS) that is able to (a) wirelessly transmit triggering signal from the computer to the signal generator which supplies voltage waveforms that move the MEMS microelectrodes, (b) wirelessly transmit neural data from the brain to the external computer, and (c) provide an electrical interface for a closed loop control to continuously move the microelectrode till a proper quality of neural signal is achieved. One of the main challenges of this project is the limited data transmission rate of the commercially available wireless system to transmit 400 kbps of digitized neural signals/electrode, which include spikes, local field potential (LFP), and noise. A commercially available Bluetooth module is only capable to transmit at a total of 115 kbps data transfer rate. The approach to this challenge is to digitize the analog neural signal with a lower accuracy ADC to lower the data rate, so that is reasonable to wirelessly transfer neural data of one channel. In addition, due to the limited space and weight bearing capability to the rodent's head, a compact and power efficient integrated system is needed to reduce the packaged volume and power consumption. 3D SoP technology has been used to stack the PCBs in a 3D form-factor, proper routing designs and techniques are implemented to reduce the electrical routing resistances and the parasitic RC delay. It is expected that this 3D design will reduce the power consumption significantly in comparison to the 2D one. The progress of this project is divided into three different phases, which can be outlined as follow: a) Design, develop, and test Bluetooth wireless system to transmit the triggering signal from the computer to the signal generator. The system is designed for three moveable microelectrodes. b) Design, develop, and test Bluetooth wireless system to wirelessly transmit an amplified (200 gain) neural signal from one single electrode to an external computer. c) Design, develop, and test a closed loop control system that continuously moves a microelectrode in searching of an acceptable quality of neural spikes. The outcome of this project can be used not only for the need of neural application but also for a wider and general applications that requires customized signal generations and wireless data transmission.
ContributorsZhou, Li (Author) / Muthuswamy, Jitendran (Thesis advisor) / Sutanto, Jemmy (Thesis advisor) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2012
150217-Thumbnail Image.png
Description
The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some

The past two decades have been monumental in the advancement of microchips designed for a diverse range of medical applications and bio-analysis. Owing to the remarkable progress in micro-fabrication technology, complex chemical and electro-mechanical features can now be integrated into chip-scale devices for use in biosensing and physiological measurements. Some of these devices have made enormous contributions in the study of complex biochemical processes occurring at the molecular and cellular levels while others overcame the challenges of replicating various functions of human organs as implant systems. This thesis presents test data and analysis of two such systems. First, an ISFET based pH sensor is characterized for its performance in a continuous pH monitoring application. Many of the basic properties of ISFETs including I-V characteristics, pH sensitivity and more importantly, its long term drift behavior have been investigated. A new theory based on frequent switching of electric field across the gate oxide to decrease the rate of current drift has been successfully implemented with the help of an automated data acquisition and switching system. The system was further tested for a range of duty cycles in order to accurately determine the minimum length of time required to fully reset the drift. Second, a microfluidic based vestibular implant system was tested for its underlying characteristics as a light sensor. A computer controlled tilt platform was then implemented to further test its sensitivity to inclinations and thus it‟s more important role as a tilt sensor. The sensor operates through means of optoelectronics and relies on the signals generated from photodiode arrays as a result of light being incident on them. ISFET results show a significant drop in the overall drift and good linear characteristics. The drift was seen to reset at less than an hour. The photodiodes show ideal I-V comparison between photoconductive and photovoltaic modes of operation with maximum responsivity at 400nm and a shunt resistance of 394 MΩ. Additionally, post-processing of the tilt sensor to incorporate the sensing fluids is outlined. Based on several test and fabrication results, a possible method of sealing the open cavity of the chip using a UV curable epoxy has been discussed.
ContributorsMamun, Samiha (Author) / Christen, Jennifer Blain (Thesis advisor) / Goryll, Michael (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2011
154058-Thumbnail Image.png
Description
Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus,

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus, there is a need to integrate soft and hard materials for the advancement of environmental-ly responsive materials.

Conventional hydrogels lack good mechanical properties and have inherently slow response time, important characteristics which must be improved before the hydrogels can be integrated with silicon. In the present dissertation work, both these important attrib-utes of a temperature responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), were improved by adopting a low temperature polymerization process and adding a sili-cate compound, tetramethyl orthosilicate. Furthermore, the transition temperature was modulated by adjusting the media quality in which the hydrogels were equilibrated, e.g. by adding a co-solvent (methanol) or an anionic surfactant (sodium dodecyl sulfate). In-terestingly, the results revealed that, based on the hydrogels’ porosity, there were appre-ciable differences when the PNIPAAm hydrogels interacted with the media molecules.

Next, an adhesion mechanism was developed in order to transfer silicon thin film onto the hydrogel surface. This integration provided a means of mechanical buckling of the thin silicon film due to changes in environmental stimuli (e.g., temperature, pH). We also investigated how novel transfer printing techniques could be used to generate pat-terned deformation of silicon thin film when integrated on a planar hydrogel substrate. Furthermore, we explore multilayer hybrid hydrogel structures formed by the integration of different types of hydrogels that have tunable curvatures under the influence of differ-ent stimuli. Silicon thin film integration on such tunable curvature substrates reveal char-acteristic reversible buckling of the thin film in the presence of multiple stimuli.

Finally, different approaches of incorporating visible light response in PNIPAAm are discussed. Specifically, a chemical chromophore- spirobenzopyran was synthesized and integrated through chemical cross-linking into the PNIPAAm hydrogels. Further, methods of improving the light response and mechanical properties were also demonstrat-ed. Interestingly, such a system was shown to have potential application as light modulated topography altering system
ContributorsChatterjee, Prithwish (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Thesis advisor) / Lind, Mary Laura (Committee member) / Yu, Hongyu (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Dai, Lenore (Committee member) / Kozicki, Michael (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016