Matching Items (2)
Filtering by

Clear all filters

171548-Thumbnail Image.png
Description
Skeletal muscle can intrinsically repair itself in response to injury. This repair process has been shown to be mediated through signaling of the innate immune system. The immune response caused during repair helps to clear away debris in damage and promotes the activation and proliferation of muscle stem cells (MuSCs)

Skeletal muscle can intrinsically repair itself in response to injury. This repair process has been shown to be mediated through signaling of the innate immune system. The immune response caused during repair helps to clear away debris in damage and promotes the activation and proliferation of muscle stem cells (MuSCs) that will repair the damage muscle. Dysregulation of this inflammation leads to fibrosis and decreased efficacy of the repair process. Despite the requirement of inflammatory signaling during muscle repair, muscle’s contribution during inflammation as only recently started to be explored. The objective of this dissertation is to assess the contribution of muscle in the early inflammatory response during repair as well attempting to modulate this inflammation during disease to ameliorate disease pathology in a model of Duchenne’s muscular dystrophy. I tested the hypotheses that 1) muscle is an active participant in the early inflammatory response, 2) the transcription factor Mohawk (Mkx) is a regulator of the early inflammatory response and, 3) If this inflammation can be modulated with a virally derived serine protease inhibitor in a model of muscle disrepair and chronic inflammation. I found that muscle is actively participating in the establishment early inflammation in repair through the production of chemokines used to promote infiltration of immune cells. As well as the identification of a new muscle subtype that produces more chemokines compared to the average MuSC and upregulated genes in the Interferon signaling pathway. I also discovered that presence of this muscle subtype is linked to the expression of Mkx. In Mkx null mice this population is not present, and these cells are deficient in chemokine expression compared to WT mice. I subsequently found that, using the myxomavirus derived serine protease inhibitor, Serp-1 I was able to modulate the chronic inflammation that is common in those affected with Duchenne’s muscular dystrophy (DMD) utilizing a high-fidelity mouse model of the disease. The result of this dissertation provides an expanded role for muscle in inflammation and gives a potential new class of therapeutics to be used in disease associated with chronic inflammation.
ContributorsAndre, Alex (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Lake, Doug (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2022
158783-Thumbnail Image.png
Description
Skeletal muscle injury, whether acute or chronic, is characterized by influxes of pro- and anti-inflammatory cells that coordinate with muscle to precisely control the reparative process. This intricate coordination is facilitated by a signaling feedback loop between satellite cells and extravasated immune cells. Regulation of the cytokines and chemokines that

Skeletal muscle injury, whether acute or chronic, is characterized by influxes of pro- and anti-inflammatory cells that coordinate with muscle to precisely control the reparative process. This intricate coordination is facilitated by a signaling feedback loop between satellite cells and extravasated immune cells. Regulation of the cytokines and chemokines that mediate healthy repair is critical for the overall success of fiber regeneration and thus provides a prospective direction for the development of therapeutics aimed at fine-tuning the local inflammatory response. This work describes (1) the contribution of non-myogenic cells in skeletal muscle regeneration, (2) the role of the transcription factor Mohawk (Mkx) in regulating inflammation following acute muscle injury and the identification of an overarching requirement for Mkx in the establishment of a pro-inflammatory response, and (3) characterization of eosinophils in acute and chronic muscle damage. Mice deficient for Mkx exhibited delayed muscle regeneration, accompanied by impaired clearance of necrotic fibers and smaller regenerated fibers. This diminished regenerative capacity was associated with a reduction in the recruitment of pro-inflammatory macrophages to the site of damage. In culture, Mkx-/- bone marrow-derived macrophages displayed reduced proliferative capacity but retained the ability to polarize in response to a pro-inflammatory stimulus. The necessity of Mkx in mounting a robust immune response was further confirmed by an immunological challenge in which Mkx-/- mice exhibited increased susceptibility to Salmonella enterica serovar Typhimurium infection. Significant downregulation of key cytokine and chemokine expression was identified throughout the course of muscle repair in Mkx-/- mice and represents one mechanism in which Mkx regulates the establishment of an inflammatory response. Previous research discovered that Mkx is highly expressed in eosinophils, a type of innate immune cell that participates in disease-fighting and inflammation, however the role of eosinophils in muscle repair is not well described. This work outlines the contribution of eosinophils in muscle repair following acute and chronic injury. In healthy mice, eosinophils were found to inhibit efficient muscle repair following acute injury. Utilizing the mdx-/-utrn-/- muscular dystrophy mouse model, eosinophil depletion via administration of anti-IL-5 antibody significantly improved diaphragm fiber diameter and increased the survival rate during the course of treatment.
ContributorsLynch, Cherie Alissa (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Newbern, Jason (Committee member) / Lake, Douglas (Committee member) / Allen, Ronald (Committee member) / Arizona State University (Publisher)
Created2020