Matching Items (10)
Filtering by

Clear all filters

150418-Thumbnail Image.png
Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
ContributorsSoho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2011
151359-Thumbnail Image.png
Description
Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.
ContributorsShen, Luhui (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Miller, Laurence (Committee member) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2012
148393-Thumbnail Image.png
Description

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing conditions into minor annoyances; Some of these afflictions have even become nonexistent or even extinct in certain parts of the world outside of a controlled laboratory setting. With many advancements and overwhelming evidence proving their efficiency, it is clear that vaccines have become nothing less than a necessity for everyday healthcare in today’s world. <br/>The greatest contributor to the creation and evolution of vaccines throughout the years is by far the progress and work done in the field of molecular and cellular biology. These advancements have become the bedrock of modern vaccination, as shown by the differing types of vaccines and their methodology. The most common varieties of vaccines are include ‘dead’ or inactivated vaccines, one such example being the pertussis strain of vaccines, which have either dead or torn apart cells for the body to easily fight off, allowing the immune system to easily and quickly counter the illness; Additionally, there are also live attenuated vaccines (LAVs) in which a weaker version of the pathogen is introduced to the body to stimulate an immune response, or a recombinant mRNA vaccine where mRNA containing the coding for an antigen is presented for immunological response, the latter being what the current COVID-19 vaccines are based on. This is in part aided by the presence of immunological adjuvants, antigens and substances that the immune system can recognize, target, and remember for future infections. However, for more serious illnesses the body needs a bigger threat to analyze, which leads to live vaccines- instead of dead or individual components of a potential pathogen, a weakened version is created in the lab to allow the body to combat it. The idea behind this is the same, but to a larger degree so a more serious illness such as measles, mumps, and rubella (MMR) do not infect us.<br/>However, for the past couple of decades the public’s views on vaccination has greatly varied, with the rise of fear and disinformation leading those to believe that modern medicine is a threat in disguise. The largest of these arguments began in the late 90’s, when Dr. Andrew Wakefield published an article under the Lancet with false information connecting vaccinations to the occurrence of autism in younger children- a theory which has since then been proven incorrect numerous times over. Unfortunately, the rise of hysteria and paranoia in people, along with more misinformation from misleading sources, have strengthened the anti-vaccination cause and has made it into a serious threat to the health of those world-wide.<br/>The aim of this thesis is to provide an accurate and thorough analysis on these three themes- the history of vaccines, their inner workings and machinations in providing immune defenses for the body, and the current controversy of the anti-vaccination movement. Additionally, there will be two other sections going in-depth on two specific areas where vaccination is highly important; The spread and fear of the Human Immunodeficiency Virus (HIV) has been around for nearly four decades, so it begs the question: what makes this such a difficult virus, and how can a vaccine be created to combat it? Additionally, in the last year the world has encountered a new virus that has evolved into a global pandemic, SARS-COV 2. This new strain of coronavirus has shown itself to be highly contagious and rapidly mutating, and the race to quickly develop a vaccine to counteract it has been on-going since its first major infections in Wuhan, China. Overall, this thesis will go in-depth in providing the most accurate, up-to-date, and critical information regarding vaccinations today.

ContributorsKolb Celaya, Connor Emilio (Author) / Topal, Emel (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
ContributorsBarton, Madisen L (Author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134414-Thumbnail Image.png
Description
Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α,

Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α, shutting down protein synthesis and halting the viral life cycle. To combat host defenses, vaccinia virus encodes E3, a potent inhibitor of the cellular anti-viral eIF2α kinase, PKR. The E3 protein contains a C-terminal dsRNA-binding motif that sequesters dsRNA and inhibits PKR activation. We demonstrate that E3 also interacts with PKR by co-immunoprecipitation. This interaction is independent of the presence of dsRNA and dsRNA-binding by E3, indicating that the interaction is not due to dsRNA-bridging.
PKR interaction mapped to a region within the dsRNA-binding domain of E3 and overlapped with sequences in the C-terminus of this domain that are necessary for binding to dsRNA. Point mutants of E3 were generated and screened for PKR inhibition and direct interaction. Analysis of these mutants demonstrates that dsRNA-binding but not PKR interaction plays a critical role in the broad host range of VACV. Nonetheless, full inhibition of PKR in cells in culture requires both dsRNA-binding and PKR interaction. Because E3 is highly conserved among orthopoxviruses, understanding the mechanisms that E3 uses to inhibit PKR can give insight into host range pathogenesis of dsRNA producing viruses.
ContributorsFoster, Clayton (Co-author) / Alattar, Hamed (Co-author) / Jacobs, Bertram (Thesis director) / Blattman, Joseph (Committee member) / McFadden, Grant (Committee member) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134509-Thumbnail Image.png
Description
Phytohemagglutinin (PHA) is a plant lectin commonly used to stimulate and test responses of the immune system and is known to induce T cell proliferation, agglutinate human leukocytes, and yield adjustments in lymphocyte populations. What is not well know is how responses to PHA correlate with a host's ability to

Phytohemagglutinin (PHA) is a plant lectin commonly used to stimulate and test responses of the immune system and is known to induce T cell proliferation, agglutinate human leukocytes, and yield adjustments in lymphocyte populations. What is not well know is how responses to PHA correlate with a host's ability to resist or recover from pathogen invasion. This study uses information from previously published studies to determine whether or not PHA can be a good indicator of disease severity or disease resistance in a host. With PHA having the abilities that it does, immune responses to PHA may correlate with responses important for pathogen resistance and clearance. Such a relationship could only be uncovered if in vivo or in vitro responses to PHA are measured and, independent from the PHA challenge, symptoms and/or mortality rates of hosts are documented after pathogen exposure. An in vitro response can be detected by measuring cellular proliferation in response to PHA followed by separate cell cultures exposed to a pathogen. While an in vivo response can be detected by measuring variation in swelling in response to an injection of PHA. In reviewing a broad range of articles that meet my criteria, the majority of articles failed to show a strong relationship between PHA and disease severity or disease resistance. Therefore, immunologists must consider the usefulness of the PHA tests as a measure of immunocompetence, which is a host's ability to predict response to a pathogen. According to the literature, using PHA does not predict responses to pathogen invasion. However, it is possible that with carefully designed experiments, it could be determined that PHA does provide an indication of pathogen resistance in certain host species exposed to specific pathogen.
ContributorsMackey, Tracy Michelle (Author) / Moore, Marianne (Thesis director) / Penton, Ryan (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
190913-Thumbnail Image.png
Description
Z-DNA binding protein 1 (ZBP1) is an interferon-inducible protein that plays a crucial role in antiviral defense by recognizing Z-form nucleic acid (Z-NA), a left-handed conformer of double-stranded DNA/RNA. When ZBP1 binds to Z-NA, it can trigger programmed cell death pathways, including apoptosis and necroptosis, in collaboration with receptor interacting

Z-DNA binding protein 1 (ZBP1) is an interferon-inducible protein that plays a crucial role in antiviral defense by recognizing Z-form nucleic acid (Z-NA), a left-handed conformer of double-stranded DNA/RNA. When ZBP1 binds to Z-NA, it can trigger programmed cell death pathways, including apoptosis and necroptosis, in collaboration with receptor interacting protein kinases 1 and 3 (RIPK1 and RIPK3). Z-NA positive viruses including poxviruses and influenza A virus (IAV) activate ZBP1-dependent cell death during replication. Little is known whether ZBP1 plays any role during Z-NA negative virus infection. Doxycycline-inducible A549 ACE2 Tet-On cells were constructed to express ZBP1 and were infected with Z-NA negative viruses. ZBP1-expressing cells infected with Sindbis virus (SINV), La Crosse virus (LACV), Vesicular stomatitis virus (VSV) and human coronavirus OC43 (hCoV-OC43) underwent extensive cell death, which could be rescued by a caspase inhibitor but not by JAK1/2 or RIPK1 kinase inhibitors. However, cell death was not observed upon Zika virus (ZIKV), Encephalomyocarditis virus (EMCV), Chikungunya virus (CHKV) or human coronavirus 229E (hCoV-229E) infection. ZBP1 expression did not impact the replication of all tested viruses. In addition, ZBP1-mediated cell death during infection depends on the Zα2 and RHIM1 domains and partially on the C-terminal domain. These findings suggest that Z-NA can be detected by the Zα2 domain to initiate cell death pathways during infection with some Z-NA negative viruses and that the RHIM1/C-terminal domains are necessary for ZBP1-induced cell death. Further research is needed to determine the Z-NA ligand and the precise mechanism of ZBP1-mediated antiviral responses and how they can be exploited for the development of novel antiviral therapies.
ContributorsLa Rosa, Bruno Andres (Author) / Li, Yize (Thesis advisor) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2023
152641-Thumbnail Image.png
Description
The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive

The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive immune system is further split into two main categories: humoral and cellular immunity. The humoral immune response produces antibodies against specific targets, and these antibodies can be used to learn about disease and normal states. In this document, I use antibodies to characterize the immune system in two ways: 1. I determine the Antibody Status (AbStat) from the data collected from applying sera to an array of non-natural sequence peptides, and demonstrate that this AbStat measure can distinguish between disease, normal, and aged samples as well as produce a single AbStat number for each sample; 2. I search for antigens for use in a cancer vaccine, and this search results in several candidates as well as a new hypothesis. Antibodies provide us with a powerful tool for characterizing the immune system, and this natural tool combined with emerging technologies allows us to learn more about healthy and disease states.
ContributorsWhittemore, Kurt (Author) / Sykes, Kathryn (Thesis advisor) / Johnston, Stephen A. (Committee member) / Jacobs, Bertram (Committee member) / Stafford, Phillip (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
153408-Thumbnail Image.png
Description
Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability

Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability to self-renew and rapidly proliferate into effector cells during secondary infections. However during persistent viral infection, T cell differentiation is disrupted due to sustained antigen stimulation resulting in a loss of T cell effector function. Despite the development of vaccines for a wide range of viral diseases, efficacious vaccines for persistent viral infections have been challenging to design. Immunization against virus T cell epitopes has been proposed as an alternative vaccination strategy for persistent viral infections, such as HIV. However, vaccines that selectively engage T cell responses can result in inappropriate immune responses that increase, rather than prevent, disease. Quantitative models of virus infection and immune response were used to investigate how virus and immune system variables influence pathogenic versus protective T cell responses generated during persistent viral infection. It was determined that an intermediate precursor frequency of virus-specific memory CD8 T cells prior to LCMV infection resulted in maximum T cell mediated pathology. Increased pathology was independent of antigen sensitivity or the diversity of TCR in the CD8 T cell response, but was dependent on CD8 T cell production of TNF and the magnitude of initial virus exposure. The threshold for exhaustion of responding CD8 T cells ultimately influences the precursor frequency that causes enhanced disease.In addition, viral infection can occur in the context of co-infection by heterologous pathogens that modulate immune responses and/or disease. Co-infection of two unrelated viruses in their natural host, Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV) infection in mice, were studied. ECTV infection can be a lethal infection in mice due in part to the blockade of antiviral cytokines, including Type I Interferons (IFN-I). It was determined that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, presumably due to IFN-I induction by LCMV. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and biased toward effector-memory cell generation. Thus, providing evidence for bi-directional effects of viral co-infection that modulate disease and immunity. Together the results suggest heterogeneity in T cell responses during vaccination with viral vectors may be in part due to heterologous virus infection or vaccine usage and that TNF-blockade may be useful for minimizing pathology while maintaining protection during virus infection. Lastly, quantitative mathematical models of virus and T cell immunity can be useful to generate predictions regarding which molecular and cellular pathways mediate T cell protection versus pathology.
ContributorsMcAfee, Megan (Author) / Blattman, Joseph N (Thesis advisor) / Anderson, Karen (Committee member) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2015
152851-Thumbnail Image.png
Description
Peptide microarrays are to proteomics as sequencing is to genomics. As microarrays become more content-rich, higher resolution proteomic studies will parallel deep sequencing of nucleic acids. Antigen-antibody interactions can be studied at a much higher resolution using microarrays than was possible only a decade ago. My dissertation focuses on testing

Peptide microarrays are to proteomics as sequencing is to genomics. As microarrays become more content-rich, higher resolution proteomic studies will parallel deep sequencing of nucleic acids. Antigen-antibody interactions can be studied at a much higher resolution using microarrays than was possible only a decade ago. My dissertation focuses on testing the feasibility of using either the Immunosignature platform, based on non-natural peptide sequences, or a pathogen peptide microarray, which uses bioinformatically-selected peptides from pathogens for creating sensitive diagnostics. Both diagnostic applications use relatively little serum from infected individuals, but each approaches diagnosis of disease differently. The first project compares pathogen epitope peptide (life-space) and non-natural (random-space) peptide microarrays while using them for the early detection of Coccidioidomycosis (Valley Fever). The second project uses NIAID category A, B and C priority pathogen epitope peptides in a multiplexed microarray platform to assess the feasibility of using epitope peptides to simultaneously diagnose multiple exposures using a single assay. Cross-reactivity is a consistent feature of several antigen-antibody based immunodiagnostics. This work utilizes microarray optimization and bioinformatic approaches to distill the underlying disease specific antibody signature pattern. Circumventing inherent cross-reactivity observed in antibody binding to peptides was crucial to achieve the goal of this work to accurately distinguishing multiple exposures simultaneously.
ContributorsNavalkar, Krupa Arun (Author) / Johnston, Stephen A. (Thesis advisor) / Stafford, Phillip (Thesis advisor) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2014