Matching Items (18)
Filtering by

Clear all filters

155948-Thumbnail Image.png
Description
CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes on the infected/malignant cell surface. However, how CTLs are able to respond to antigenic peptides with high specificity is largely unknown. Also unknown, are the different mechanisms underlying tumor immune evasion from CTL-mediated cytotoxicity. In this dissertation, I investigate the immunogenicity and dysfunction of CTLs for the development of novel T-cell therapies. Project 1 explores the biochemical hallmarks associated with HLA-I binding peptides that result in a CTL-immune response. The results reveal amino acid hydrophobicity of T-cell receptor (TCR) contact residues within immunogenic CTL-epitopes as a critical parameter for CTL-self
onself discrimination. Project 2 develops a bioinformatic and experimental methodology for the identification of CTL-epitopes from low frequency T-cells against tumor antigens and chronic viruses. This methodology is employed in Project 3 to identify novel immunogenic CTL-epitopes from human papillomavirus (HPV)-associated head and neck cancer patients. In Project 3, I further study the mechanisms of HPV-specific T-cell dysfunction, and I demonstrate that combination inhibition of Indoleamine 2, 3-dioxygenase (IDO-1) and programmed cell death protein (PD-1) can be a potential immunotherapy against HPV+ head and neck cancers. Lastly, in Project 4, I develop a single-cell assay for high-throughput identification of antigens targeted by CTLs from whole pathogenome libraries. Thus, this dissertation contributes to fundamental T-cell immunobiology by identifying rules of T-cell immunogenicity and dysfunction, as well as to translational immunology by identifying novel CTL-epitopes, and therapeutic targets for T-cell immunotherapy.
ContributorsKrishna, Sri (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Jacobs, Bertram L (Committee member) / Lake, Douglas F (Committee member) / Arizona State University (Publisher)
Created2017
157007-Thumbnail Image.png
Description
Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a

Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a rapid, cost-effective, and minimally-invasive window to disease and are ideal for population-based screening. Circulating immune biomarkers are stable, measurable, and can betray the underlying antigen when present below detection levels or even no longer present. This dissertation aims to investigate potential circulating immune biomarkers with applications in cancer detection and novel therapies. Over 600,000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers. A key challenge in understanding HPV immunobiology and developing immune biomarkers is the diversity of HPV types and the need for multiplexed display of HPV antigens. In Project 1, nucleic acid programmable protein arrays displaying the proteomes of 12 HPV types were developed and used for serum immunoprofiling of women with cervical lesions or invasive cervical cancer. These arrays provide a valuable high-throughput tool for measuring the breadth, specificity, heterogeneity, and cross-reactivity of the serologic response to HPV. Project 2 investigates potential biomarkers of immunity to the bacterial CRISPR/Cas9 system that is currently in clinical trials for cancer. Pre-existing B cell and T cell immune responses to Cas9 were detected in humans and Cas9 was modified to eliminate immunodominant epitopes while preserving its function and specificity. This dissertation broadens our understanding of the immunobiology of cervical cancer and provides insights into the immune profiles that could serve as biomarkers of various applications in cancer.
ContributorsEwaisha, Radwa Mohamed Emadeldin Mahmoud (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas F (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2018
133045-Thumbnail Image.png
Description
Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a

Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a need for developing a rapid biomarker to profile immunity to these viruses. The viral E7 oncogene is expressed in most HPV-associated cancers and anti-E7 antibodies can be detected in the blood of patients with cervical cancer. This research was focused on viral E7 oncogene expression to be used in development of low-cost point of care tests, enabling patients from low resource settings to detect the asymptotic stage of cervical cancer and be able to seek treatment early. In order to produce the E7 protein in vitro to measure antibody levels, GST tagged E7 genes from HPV 16, 18 and 45 species were inserted into the pDEST15 vector and expressed in E. coli BL21DE3 cells that were induced with 1mM of IPTG. The E7-GST fused expressed protein was then purified using glutathione beads and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein expression was 5.8 \u03bcg/ml for HPV 16E7 in 500 ml culture and for the 500 ml culture of HPV 18 E7 and 45 E7 were 10.5 \u03bcg/ml and 10.5 \u03bcg/ml for HPV 18E7 and 45E7 respectively. High yield values are showing high expression levels of GST-tagged E7 recombinant protein which can be used for serotyping a number of individuals. This shows that HPV E7 can be produced in large quantities that can potentially be used in point of care tests that can help identify women at risk of cervical cancer. In conclusion, the E7 protein produced in this study can potentially be used to induce humoral responses in patients\u2019 sera for understanding the immune response of cervical cancer.
ContributorsMakuyana, Ntombizodwa (Author) / Anderson, Karen (Thesis director) / Ewaisha, Radwa (Committee member) / Varsani, Arvind (Committee member) / Hou, Ching-Wen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
168280-Thumbnail Image.png
Description
Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start

Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start codon mutation leading to an N-terminal truncation of 37 amino acids. The VACV protein E3 consists of a dsRNA binding domain in its C-terminus which must be intact for pathogenicity in murine models and replication in cultured cells. The N-terminus of E3 contains a Z-form nucleic acid (ZNA) binding domain and is also required for pathogenicity in murine models. Poxviruses produce RNA transcripts that extend beyond the transcribed gene which can form double-stranded RNA (dsRNA). The innate immune system easily recognizes dsRNA through proteins such as protein kinase R (PKR). After comparing a vaccinia virus with a wild-type E3 protein (VACV WT) to one with an E3 N-terminal truncation of 37 amino acids (VACV E3Δ37N), phenotypic differences appeared in several cell lines. In HeLa cells and certain murine embryonic fibroblasts (MEFs), dsRNA recognition pathways such as PKR become activated during VACV E3Δ37N infections, unlike VACV WT. However, MPXV does not activate PKR in HeLa or MEF cells. Additional investigation determined that MPXV produces less dsRNA than VACV. VACV E3Δ37N was made more similar to MPXV by selecting mutants that produce less dsRNA. By producing less dsRNA, VACV E3Δ37N no longer activated PKR in HeLa or MEF cells, thus restoring the wild-type phenotype. Furthermore, in other cell lines such as L929 (also a murine fibroblast) VACV E3Δ37N, but not VACV WT infection leads to activation of DNA-dependent activator of IFN-regulatory factors (DAI) and induction of necroptotic cell death. The same low dsRNA mutants demonstrate that DAI activation and necroptotic induction is independent of classical dsRNA. Finally, investigations of spread in an animal model and replication in cell lines where both the PKR and DAI pathways are intact determined that inhibition of both pathways is required for VACV E3Δ37N to replicate.
ContributorsCotsmire, Samantha (Author) / Jacobs, Bertram L (Thesis advisor) / Varsani, Arvind (Committee member) / Hogue, Brenda (Committee member) / Haydel, Shelley (Committee member) / Arizona State University (Publisher)
Created2021
189343-Thumbnail Image.png
Description
The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS

The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS proteins exist, OAS1, OAS2, and OAS3. Recent evidence suggests variations in cellular localization of OAS proteins may influence the impact and influence of those proteins on viral replication. However, viral suppression mechanisms involving specific OAS proteins are still unclear for most viruses. Here, I overexpress different isoforms of OAS and determined that though viruses within the same family have similar replication strategies, the extent to which each OAS protein impacts viral replication for Flaviviruses, and Alphaviruses varies. In contrast to the innate immune system, the adaptive immune system provides specific and long-lived immune responses. In the context of cancer, T cells have been shown to play a prominent role in tumor regression. It has previously been demonstrated that administration α-CTLA-4/α-PD-L1 immune checkpoint blockade (ICB) to mice inoculated with a K7M2 metastatic osteosarcoma (mOS) cell line resulted in ~50% survival. Here, I sought to determine biological differences among murine responders and non-responders to ICB for mOS to understand better what factors could increase ICB efficacy. A prospective culprit is a variance in circulating antibodies (Abs). I have shown that sera from mice, before inoculation with mOS or ICB, display distinct differences in Ab repertoire between responders and non-responders, suggesting the presence or absence of particular Abs may influence the outcome of ICB. Recent studies have also shown that malleable environmental factors, such as differences in microbiome composition, can yield subsequent changes in circulating Abs. Strong associations have been made between host-microbiome interactions and their effects on health. Here, I study potential associations of microbiome-mediated impacts on ICB efficacy for mOS. Additionally, I sought to determine potential changes in T-cellular response to mOS due to modulations in microbiome composition and showed that ICB efficacy can change in conjunction with microbiome composition changes in a murine model.
ContributorsDi Palma, Michelle Pina (Author) / Blattman, Joseph N (Thesis advisor) / Li, Yize (Thesis advisor) / Anderson, Karen S (Committee member) / McFadden, Grant (Committee member) / Arizona State University (Publisher)
Created2023
187353-Thumbnail Image.png
Description
Despite the prevalence of coyotes (Canis latrans) little is known about the viruses associated with this species. To assess the extent of viral research that has been conducted on coyotes, a literature review was performed. Over the last six decades, there have been many viruses that have been identified infecting

Despite the prevalence of coyotes (Canis latrans) little is known about the viruses associated with this species. To assess the extent of viral research that has been conducted on coyotes, a literature review was performed. Over the last six decades, there have been many viruses that have been identified infecting coyotes. The pathology of some cases implies that infection is rare and lethal while others have been demonstrated to be endemic to coyotes. In addition, the majority of the prior analyses were done through serological assays that were limited to investigating target viruses. To help expand what is known about coyote-virus dynamics, viral assays were conducted on coyote scat. The samples were collected as part of transects established along the Salt River near Phoenix, Arizona, United States (USA). The recovered viral genomes were clustered with other deoxynucleic acid (DNA) viruses and analyzed to determine phylogeny and genetic identity. From the recovered viral genomes, there are two novel circoviruses, one novel naryavirus, five unclassified cressdnaviruses, and two previously identified species of anelloviruses from the Wawtorquevirus genus. For these viruses, new phylogenies for their groups and pairwise identity plots have been generated. These figures give insight into the potential hosts and the evolutionary history. In the case of the anelloviruses, they likely derived from a wood rat (Neotoma) host, given the anellovirus family’s host specificity and its similarity to another viral genome derived from a wood rat in Arizona, USA. Of the recovered circovirus genomes, one is associated with a viral isolate collected from a dust sample in Arizona, USA. The second circovirus species identified is within a clade that consists of rodent associated circoviruses and canine circovirus. Other recovered genomes expand clusters of unclassified cressdnaviruses. The recovered genomes support further genomic analysis. These findings help support the notion that there is a wealth of viral information to be identified from animals like coyotes. By understanding the viruses that coyotes are associated with, it is possible to better understand the viral impact on the urban environment, domesticated animals, and wildlife in general.
ContributorsHess, Savage Cree (Author) / Varsani, Arvind (Thesis advisor) / Kraberger, Simona (Committee member) / Upham, Nathan S (Committee member) / Arizona State University (Publisher)
Created2023
187397-Thumbnail Image.png
DescriptionA
ContributorsLund, Michael (Author) / Varsani, Arvind (Thesis advisor) / Upham, Nathan (Committee member) / Harris, Robin (Committee member) / Arizona State University (Publisher)
Created2023
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022
171382-Thumbnail Image.png
Description
Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human

Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human MPXV cases. MPXV has been named the most important orthopoxvirus to infect humans since the eradication of smallpox and has been the causative agent of the 2022 world-wide MPXV outbreak. Despite being highly pathogenic, MPXV contains a natural truncation at the N-terminus of its E3 homologue. Vaccinia virus (VACV) E3 protein has two domains: an N- terminus Z-form nucleic acid binding domain (Z-BD) and a C-terminus double stranded RNA binding domain (dsRBD). Both domains are required for pathogenesis, interferon (IFN) resistance, and protein kinase R (PKR) inhibition. The N-terminus is required for evasion of Z-DNA binding protein 1 (ZBP1)-dependent necroptosis. ZBP1 binding to Z- form deoxyribonucleic acid/ribonucleic acid (Z-DNA/RNA) leads to activation of receptor-interacting protein kinase 3 (RIPK3) leading to mixed lineage kinase domain- like (MLKL) phosphorylation, aggregation and cell death. This study investigated how different cell lines combat MPXV infection and how MPXV has evolved ways to circumvent the host response. MPXV is shown to inhibit necroptosis in L929 cells by degrading RIPK3 through the viral inducer of RIPK3 degradation (vIRD) and by inhibiting MLKL aggregation. Additionally, the data shows that IFN treatment efficiently inhibits MPXV replication in a ZBP1-, RIPK3-, and MLKL- dependent manner, but independent of necroptosis. Also, the data suggests that an IFN inducer with a pancaspase or proteasome inhibitor could potentially be a beneficial treatment against MPXV infections. Furthermore, it reveals a link between PKR and pathogen-induced necroptosis that has not been previously described.
ContributorsWilliams, Jacqueline (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2022
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019