Matching Items (65)
Filtering by

Clear all filters

132362-Thumbnail Image.png
Description
In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an

In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an electrophysiological perspective different than that of stimuli which don’t require full attention or exhibit impulsive multitasking responses. This study investigates the P3 component which has been experimentally proven to be associated with mental workload through information processing and cognitive function in visual and auditory tasks, where in the multitasking domain the greater attention elicited, the larger P3 waves are produced. This experiment compares the amplitude of the P3 component of individual stimulus presentation to that of multitasking trials, taking note of the brain workload. This study questions if the average wave amplitude in a multitasking ERP experiment will be the same as the grand average when performing the two tasks individually with respect to the P3 component. The hypothesis is that the P3 amplitude will be smaller in the multitasking trial than in the individual stimulus presentation, indicating that the brain is not actually concentrating on both tasks at once (sequential multitasking instead of concurrent) and that the brain is not focusing on each stimulus to the same degree when it was presented individually. Twenty undergraduate students at Barrett, the Honors College at Arizona State University (10 males and 10 females, with a mean age of 18.75 years, SD= 1.517) right handed, with normal or corrected visual acuity, English as first language, and no evidence of neurological compromise participated in the study. The experiment results revealed that one- hundred percent of participants undergo sequential multitasking in the presence of two demanding stimuli in the electrophysiological data, behavioral data, and subjective data. In this particular study, these findings indicate that the presence of additional demanding stimuli causes the workload of the brain to decrease as attention deviates in a bottleneck process to the multiple requisitions for focus, indicated by a reduced P3 voltage amplitude with the multitasking stimuli when compared to the independent. This study illustrates the feasible replication of P3 cognitive workload results for demanding stimuli, not only impulsive-response experiments, to suggest the brain’s tendency to undergo sequential multitasking when faced with multiple demanding stimuli. In brief, this study demonstrates that when higher cognitive processing is required to interpret and respond to the stimuli, the human brain results to sequential multitasking (task- switching, not concurrent multitasking) in the face of more challenging problems with each stimulus requiring a higher level of focus, workload, and attention.
ContributorsNeill, Ryan (Author) / Brewer, Gene (Thesis director) / Peter, Beate (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131951-Thumbnail Image.png
Description
Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven

Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven adult
subjects in both speaking (speech planning) and silent reading (no speech planning) conditions.
Data analysis was accomplished manually as well as via generation of a MATLAB code to
combine data sets and calculate auditory modulation (suppression). Results of the P200
modulation showed that modulation was larger for incongruent stimuli than congruent stimuli.
However, this was not the case for the N100 modulation. The data for pure tone could not be
analyzed because the intensity of this stimulus was substantially lower than that of the speech
stimuli. Overall, the results indicated that the P200 component plays a significant role in
processing stimuli and determining the relevance of stimuli; this result is consistent with role of
P200 component in high-level analysis of speech and perceptual processing. This experiment is
ongoing, and we hope to obtain data from more subjects to support the current findings.
ContributorsTaylor, Megan Kathleen (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131931-Thumbnail Image.png
Description
Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%,

Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%, but recently we have identified sensitivity of SCCOHT models to a natural product, triptolide. This study aims to ascertain the mechanism of action of triptolide. Previous SCCOHT epigenetic drug research has shown that some drugs reverse SMARCA2 epigenetic silencing to inhibit tumor growth, therefore it is hypothesized that triptolide acts the same and restores SWI/SNF function. Cells treated with triptolide have no change in SMARCA2 expression, suggesting that re-expression of epigenetically silenced tumor suppressor gene does not underlie its mechanism of action. Growth rates following triptolide treatment were observed in the presence and absence of SMARCA4, but no difference in sensitivity was observed. Thus, it is not likely that triptolide acts by restoring SWI/SNF. Others have observed that triptolide acts on xeroderma pigmentosa type B protein (XPB), a component of super-enhancers, which are DNA regions with high levels of transcription that regulate genes responsible for cell identity and oncogenes driving tumorigenesis. Both SCCOHT-1 and BIN67 cell lines treated with triptolide displayed lower expression of the super-enhancer associated MYC oncogene compared to untreated cells, supporting the theory that triptolide could be inhibiting super-enhancers regulating oncogenes.. A western blot confirmed reduced protein levels of RNA polymerase II and bromodomain 4 (BRD4), two essential components found at high levels at super-enhancers, in BIN67 cells treated with triptolide. ChIP-sequencing of Histone H3 Lysine-27 Acetylation (H3K27ac) marks in BIN67 and SCCOHT-1 cell lines identified super-enhancers in SCCOHT using tools CREAM and ROSE, which were mapped to neighboring genes associated genes and compared with the COSMIC database to identify oncogenes, of which the top 11 were examined by qRT-PCR to ascertain whether triptolide reduces their expression. It has been found that 6 out of 11 of the oncogenes examined (SALL4, MYC, SGK1, HIST1H3B, HMGA2, and CALR) decreased in expression when treated with triptolide. Thus, there is reason to believe that triptolide’s mechanism of action is via inhibition of super-enhancers that regulate oncogene expression.
ContributorsViloria, Nicolle Angela (Author) / Lake, Douglas (Thesis director) / Hendricks, William (Committee member) / Lang, Jessica (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131545-Thumbnail Image.png
Description
Immunology, the study of the immune system and its ability to distinguish self from non-self, is a rapidly advancing sector of molecular biology. Cancer, being host derived, provides a difficult challenge for immune cells to distinguish it from normal tissue. The historic treatment of cancer has had three main methods:

Immunology, the study of the immune system and its ability to distinguish self from non-self, is a rapidly advancing sector of molecular biology. Cancer, being host derived, provides a difficult challenge for immune cells to distinguish it from normal tissue. The historic treatment of cancer has had three main methods: radiation, chemotherapy, and surgery (1). Due to recent advancements in understanding the regulatory role of adaptive immunity against cancer, researchers have been attempting to engineer therapies to enhance patients’ immunities against their cancer. Immunotherapies, both passive and active, demonstrate potential for combating many diseases. Passive immunization provides temporary protection against a pathogen, whereas active immunization teaches the patient’s system to respond to the antigen independently, giving life-long immunity. Passive immunization, generally, is a much more expensive method of providing immunity and is commonly used in emergency situations. Anti-venom, for example, uses antibodies grown in lab to neutralize venom. Examples of active immunization are vaccines, which mimic the wild-type pathogen in a way that elicits an immune response, specifically naïve lymphocyte activation and maturation into memory lymphocytes. In terms of cancer therapy, both passive and active immunization are being tested for efficacy (2).
ContributorsMarquardt, Charles Andrew (Author) / Anderson, Karen S. (Thesis director) / Mason, Hugh S. (Committee member) / Lake, Douglas F. (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131570-Thumbnail Image.png
Description
Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies

Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies (6Hz, 12Hz, and 22Hz), transcranial random noise stimulation (tRNS), and a no-stimulation sham condition. In all stimulation conditions, we recorded electroencephalographic data to investigate the link between different frequencies of tACS and their effects on brain oscillations. We recruited 12 healthy participants. Each participant completed 30 trials of the stimulation conditions. In a given trial, we recorded brain activity for 10 seconds, stimulated for 12 seconds, and recorded an additional 10 seconds of brain activity. The difference between the average oscillation power before and after a stimulation condition indicated change in oscillation amplitude due to the stimulation. Our results showed the stimulation conditions entrained brain activity of a sub-group of participants.
ContributorsChernicky, Jacob Garrett (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131672-Thumbnail Image.png
Description
The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA cells and MRSA secreted proteins [culture filtrate proteins (CFPs)] as a complementary method of controlling MRSA infections. GPs have been synthesized with variable pore sizes (meso/macro scale) and further modified with stearic acid (SA) to increase surface hydrophobicity. Four GPs (SA-macroGP, macroGP, SA-mesoGP, and mesoGP) were incubated with whole cells and with CFPs to quantify GP adsorption capabilities. Following MRSA culture incubation with GPs, unbound MRSA cells were filtered and plated to determine cell counts. Following CFP incubation with GPs, unbound CFPs were separated via SDS-PAGE, stained with SYPRO Ruby, and analyzed using densitometry. Results indicate that macroGP was the most effective at adsorbing whole MRSA cells. Visual banding patterns and densitometry quantitation indicate that SA-mesoGP was the most effective at adsorbing CFP. Ultimately, GP-based products may be further developed as nonselective or selective adsorbents and integrated into fibrous materials for topical applications.
ContributorsGanser, Collin (Co-author, Co-author) / Haydel, Shelley E. (Thesis director) / Seo, Don (Committee member) / Borges, Chad (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132678-Thumbnail Image.png
Description
Cytokines induced by inflammasome has been used for blood cancer treatments, yet these treatments have been less successful in the solid tumor microenvironment. Here precise-morphology DNA origami structures were implemented to accurately test the effect and mechanism of activation in the NLRP3 inflammasome. THP1 WT cells, a macrophage cell line,

Cytokines induced by inflammasome has been used for blood cancer treatments, yet these treatments have been less successful in the solid tumor microenvironment. Here precise-morphology DNA origami structures were implemented to accurately test the effect and mechanism of activation in the NLRP3 inflammasome. THP1 WT cells, a macrophage cell line, were treated with eleven different DNA origami structures. The inflammasome activation of two cytokines, Interleukin 1 beta (IL-1β) and Interferon beta (IFN-β), was measured using HEK Blue IL-1β cells, HEK Blue IFN-β cells, and enzyme linked immunosorbent assay (ELISA). Differences in activation signaling have the potential to provide the characterization required to address the intrinsic complexity of modulating an immune response. It is hoped that DNA origami will help induce more inflammation for solid tumors. The DNA origami was tested in three different volumes: 1 μL, 5 μL, and 10 μL. Overall, the origami that showed promising results were Mg Square. Tetrahedral and P53 block also showed potential but not as well as Mg square. Further testing of more DNA origami structures and testing them in mice are key to the success of targeted cancer immunotherapies in the neoadjuvant setting.
ContributorsGreenwald, Elinor Vera (Co-author) / Ariola, Amanda (Co-author) / Ning, Bo (Thesis director) / Zhang, Fei (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132583-Thumbnail Image.png
Description
Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells

Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells during normal inflammation response, which induces chemotactic migration of immune cells to the site. High expression of CXCL10 has been implicated in aggressive breast cancer, but the mechanism is not well understood. A potential signaling molecule downstream of Cxcl10 is Janus Kinase 2 (Jak2), a kinase activated in normal immune response. Deregulation of Jak2 is associated with metastasis, immune evasion, and tumor progression in breast cancer. Thus, we hypothesized that the Ing4/Cxcl10/Jak2 axis plays a key role in breast cancer progression. We first investigated whether Cxcl10 affected breast cancer cell migration. We also investigated whether Cxcl10-mediated migration is dependent on ING4 expression levels. We utilized genetically engineered MDAmb231 breast cancer cells with a CRISPR/Cas9 ING4-knockout construct or a viral ING4 overexpression construct. We performed Western blot analysis to confirm Ing4 expression. Cell migration was assessed using Boyden Chamber assay with or without exogenous Cxcl10 treatment. The results showed that in the presence of Cxcl10, ING4-deficient cells had a two-fold increase in migration as compared to the vector controls, suggesting Ing4 inhibits Cxcl10-induced migration. These findings support our hypothesis that ING4-deficient tumor cells have increased migration when Cxcl10 signaling is present in breast cancer. These results implicate Ing4 is a key regulator of a chemokine-induced tumor migration. Our future plan includes evaluation of Jak2 as an intermediate signaling molecule in Cxcl10/Ing4 pathway. Therapeutic implications of these findings are targeting Cxcl10 and/or Jak2 may be effective in treating ING4-deficient aggressive breast cancer.
ContributorsArnold, Emily (Author) / Kim, Suwon (Thesis director) / Blattman, Joseph (Thesis director) / Mason, Hugh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132839-Thumbnail Image.png
Description
The world of podcasting has exploded in popularity in recent years. This medium is being used in education as well as in the public sector to share ideas, news, and stories. This paper reviews the research behind podcast success as a news form and in the educational sector and the

The world of podcasting has exploded in popularity in recent years. This medium is being used in education as well as in the public sector to share ideas, news, and stories. This paper reviews the research behind podcast success as a news form and in the educational sector and the implications of these findings for the future. Podcast listeners tend to listen to podcasts for entertainment and, notably, to diversify their time while completing other tasks. New ways to directly stream media from portable devices and advances in the internet have helped bolster the popularity of this media form. Podcasting proved to be successful in higher education as students tended to perform better when given access to podcasts. However, they were only successful when using podcasts as classroom adjuncts. This implies that educational podcasts must be produced differently than ones intended for the public. By reviewing the neuroscience behind language, emotion and memory, it was found that narrative formats that also evoked emotions had a positive ability in enhancing the listeners learning and memory. Keeping this in mind, the developed podcast aimed to bridge educational material to the general public by utilizing narrative as a vessel in which to deliver complex information about medicine, science and neuroscience. The accessibility and virtually non-existent barriers to the podcasting world offer a breadth of knowledge and opinions that have numerous factors of social influence. The impact of podcasting on the modern world deserves more research in sociology and psychology as it continues to grow in popularity.
ContributorsCharbel, Milad (Author) / Sirven, Joseph (Thesis director) / Reddy, Swapna (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05