Matching Items (5)
Filtering by

Clear all filters

135225-Thumbnail Image.png
Description
Monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine) are powerful modulators of mood and cognitive function in health and disease. We have been investigating the modulation of monoamine clearance in select brain regions via organic cation transporters (OCTs), a family of nonselective monoamine transporters. OCTs are thought to complement the actions

Monoamine neurotransmitters (e.g., serotonin, norepinephrine, and dopamine) are powerful modulators of mood and cognitive function in health and disease. We have been investigating the modulation of monoamine clearance in select brain regions via organic cation transporters (OCTs), a family of nonselective monoamine transporters. OCTs are thought to complement the actions of selective monoamine transporters in the brain by helping to clear monoamines from the extracellular space; thus, assisting to terminate the monoamine signal. Of particular interest, stress hormones (corticosterone; CORT) inhibit OCT3-mediated transport of monoamine, to putatively lead to prolonged monoamine signaling. It has been demonstrated that stress levels of CORT block OCT3 transport in the rat hypothalamus, an effect that likely underlies the rapid, stress-induced increase in local monoamines. We examined the effect of chronic variable stress (CVS) on the development of mood disorders and OCT3 expression in limbic and hypothalamic regions of the rat brain. Animals subjected to CVS (14-days with random stressor exposure two times/day) showed reduced body weight gain, indicating that CVS was perceived as stressful. However, behavioral tests of anxiety and depressive-like behaviors in rats showed no group differences. Although there were no behavioral effects of stress, molecular analysis revealed that there were stress-related changes in OCT3 protein expression. In situ hybridization data confirmed that OCT3 mRNA is expressed in the hippocampus, amygdala, and hypothalamus. Analysis of Western blot data by two-way ANOVA revealed a significant treatment effect on OCT3 protein levels, with a significant decrease in OCT3 protein in the amygdala and hippocampus in CVS rats, compared to controls. These data suggest an important role for CORT sensitive OCT3 in the reduction of monoamine clearance during stress.
ContributorsBoyll, Piper Savannah (Author) / Orchinik, Miles (Thesis director) / Conrad, Cheryl (Committee member) / Talboom, Joshua (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134718-Thumbnail Image.png
Description
Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My

Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My research focuses on defining the relationship between increased ERK/MAPK signaling and its effects on the nervous system, specifically in the context of motor learning. Motor function depends on several neuroanatomically distinct regions, especially the spinal cord, cerebellum, striatum, and cerebral cortex. We tested whether hyperactivation of ERK/MAPK specifically in the cortex was sufficient to drive changes in motor function. We used a series of genetically modified mouse models and cre-lox technology to hyperactivate ERK/MAPK in the cerebral cortex. Nex:Cre/NeuroD6:Cre was employed to express a constitutively active MEK mutation throughout all layers of the cerebral cortex from an early stage of development. RBP4:Cre, caMEK only exhibited hyper activation in cortical glutamatergic neurons responsible for cortical output (neurons in layer V of the cerebral cortex). First, the two mouse strains were tested in an open field paradigm to assess global locomotor abilities and overall fitness for fine motor tasks. Next, a skilled motor reaching task was used to evaluate motor learning capabilities. The results show that Nex:Cre/NeuroD6:Cre, caMEK mutants do not learn the motor reaching task, although they performed normally on the open field task. Preliminary results suggest RBP4:Cre, caMEK mutants exhibit normal locomotor capabilities and a partial lack of learning. The difference in motor learning capabilities might be explained by the extent of altered connectivity in different regions of the corticospinal tract. Once we have identified the neuropathological effects of various layers in the cortex we will be able to determine whether therapeutic interventions are sufficient to reverse these learning defects.
ContributorsRoose, Cassandra Ann (Author) / Newbern, Jason M. (Thesis director) / Olive, Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Alzheimer’s disease (AD) is an irreversible brain disorder that plagues millions of people with no current cure. Current clinical research is slowly advancing to more definitive treatments in hopes of reducing the effects of progressive cognitive and behavioral decline, but none so far can slow AD’s onset. A brain area

Alzheimer’s disease (AD) is an irreversible brain disorder that plagues millions of people with no current cure. Current clinical research is slowly advancing to more definitive treatments in hopes of reducing the effects of progressive cognitive and behavioral decline, but none so far can slow AD’s onset. A brain area known as the nucleus incertus (NI) was recently discovered to potentially impact AD because of its connections to brain targets that degenerate; however, the NI’s role is unknown. This goal of this experiment was to use a transgenic mouse model (APP/PS1) that expresses AD pathology slowly as found in humans, and to test the mice in a variety of cognitive and anxiety assessments. Mice of both sexes and two different ages were used, with the first being young adult before AD pathology manifests (around 3-4 months old), and the second being around the cusp of when AD pathology manifests (late adult, 8-10 months old). The mice were tested in a variety of cognitive tasks that included the novel object recognition (NOR), Morris water maze (MWM), and the object placement (OP), with the latter being the focus of my thesis. Anxiety measures were taken from the open field (OF) and elevated plus maze (EPM) with the visible platform (VP) used to ensure mice could perform on the rigorous MWM task. In the OP, we found an age effect, where the older mice were less likely to explore the moved object during the OP compared to the younger mice; motor ability was unlikely to explain this effect. We did not find any significant age by genotype effects. These findings indicate that cognitive impairment only just started to affect the older cohort, since OP impairment was found on one measure and not another. Other measures currently being quantified will be helpful in understanding this data, and to see whether learning, memory, and anxiety are affected.

ContributorsDapon, Bianca (Author) / Conrad, Cheryl (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
131942-Thumbnail Image.png
Description
There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially

There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially lending to the inconclusive treatment results at the clinical level. Recently, the TgF344-AD transgenic rat model has started to be evaluated; however, it has not been well characterized in terms of its cognition, which is fundamental to understanding the trajectory of aging relative to pathology and learning and memory changes. Therefore, the aim of the current study was to identify cognitive outcomes at 6, 9, and 12 months of age in the TgF344-AD rat model. Sixty female transgenic (Tg) and wildtype (WT) rats were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. Results from the asymptotic phase of the water radial arm maze showed that the 6 mo-Tg animals had marginally impaired working memory compared to 6 mo-WT rats, and 12 mo-Tg rats had significantly impaired working memory compared to 12 mo-WT rats. The 9 mo-Tg animals did not demonstrate a significant difference in working memory errors compared to the 9 mo-WT animals. This pattern of impairment, wherein Tg animals made more working memory errors compared to WT animals at the 6 and 12 month time points, but not at the 9 month time point, may be indicative of an inflammatory response that proves helpful at incipient stages of disease progression but eventually leads to further cognitive impairment. These results provide insight into the potential earliest time point that prodromal cognitive symptoms of AD exist, and how they progress with aging. Brain tissue was collected at sacrifice for future analyses of pathology, which will be used to glean insight into the temporal progression of pathological and cognitive outcomes.
ContributorsBulen, Haidyn Leigh (Co-author) / Bulen, Haidyn (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Conrad, Cheryl (Committee member) / Woner, Victoria (Committee member) / Peña, Veronica (Committee member) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05