Matching Items (25)
Filtering by

Clear all filters

150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
ContributorsShi, Ying (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / He, Jiping (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2011
151390-Thumbnail Image.png
Description
Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space.

Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space. However, relatively little is known about this internal representation of arm position. To this end, I developed a method to map proprioceptive estimates of hand location across a 2-d workspace. In this task, I moved each subject's hand to a target location while the subject's eyes were closed. After returning the hand, subjects opened their eyes to verbally report the location of where their fingertip had been. Then, I reconstructed and analyzed the spatial structure of the pattern of estimation errors. In the first couple of experiments I probed the structure and stability of the pattern of errors by manipulating the hand used and tactile feedback provided when the hand was at each target location. I found that the resulting pattern of errors was systematically stable across conditions for each subject, subject-specific, and not uniform across the workspace. These findings suggest that the observed structure of pattern of errors has been constructed through experience, which has resulted in a systematically stable internal representation of arm location. Moreover, this representation is continuously being calibrated across the workspace. In the next two experiments, I aimed to probe the calibration of this structure. To this end, I used two different perturbation paradigms: 1) a virtual reality visuomotor adaptation to induce a local perturbation, 2) and a standard prism adaptation paradigm to induce a global perturbation. I found that the magnitude of the errors significantly increased to a similar extent after each perturbation. This small effect indicates that proprioception is recalibrated to a similar extent regardless of how the perturbation is introduced, suggesting that sensory and motor changes may be two independent processes arising from the perturbation. Moreover, I propose that the internal representation of arm location might be constructed with a global solution and not capable of local changes.
ContributorsRincon Gonzalez, Liliana (Author) / Helms Tillery, Stephen I (Thesis advisor) / Buneo, Christopher A (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2012
150499-Thumbnail Image.png
Description
The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by measuring the rotation of the initial movement direction induced by a perturbation of the visual feedback prior to movement onset. The results suggest that contribution of vision was relatively consistent across the evaluated workspace depths; however, the influence of vision differed between the vertical and later axes indicate that additional factors beyond vision and proprioception influence movement planning of 3-dimensional movements. If the first study investigated the role of noise in sensorimotor integration, the second and third studies investigate relative influence of sensorimotor noise on reaching performance. Specifically, they evaluate how the characteristics of neural processing that underlie movement planning and execution manifest in movement variability during natural reaching. Subjects performed reaching movements with and without visual feedback throughout the movement and the patterns of endpoint variability were compared across movement directions. The results of these studies suggest a primary role of visual feedback noise in shaping patterns of variability and in determining the relative influence of planning and execution related noise sources. The final work considers a computational approach to characterizing how sensorimotor processes interact to shape movement variability. A model of multi-modal feedback control was developed to simulate the interaction of planning and execution noise on reaching variability. The model predictions suggest that anisotropic properties of feedback noise significantly affect the relative influence of planning and execution noise on patterns of reaching variability.
ContributorsApker, Gregory Allen (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
131951-Thumbnail Image.png
Description
Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven

Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven adult
subjects in both speaking (speech planning) and silent reading (no speech planning) conditions.
Data analysis was accomplished manually as well as via generation of a MATLAB code to
combine data sets and calculate auditory modulation (suppression). Results of the P200
modulation showed that modulation was larger for incongruent stimuli than congruent stimuli.
However, this was not the case for the N100 modulation. The data for pure tone could not be
analyzed because the intensity of this stimulus was substantially lower than that of the speech
stimuli. Overall, the results indicated that the P200 component plays a significant role in
processing stimuli and determining the relevance of stimuli; this result is consistent with role of
P200 component in high-level analysis of speech and perceptual processing. This experiment is
ongoing, and we hope to obtain data from more subjects to support the current findings.
ContributorsTaylor, Megan Kathleen (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131570-Thumbnail Image.png
Description
Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies

Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies (6Hz, 12Hz, and 22Hz), transcranial random noise stimulation (tRNS), and a no-stimulation sham condition. In all stimulation conditions, we recorded electroencephalographic data to investigate the link between different frequencies of tACS and their effects on brain oscillations. We recruited 12 healthy participants. Each participant completed 30 trials of the stimulation conditions. In a given trial, we recorded brain activity for 10 seconds, stimulated for 12 seconds, and recorded an additional 10 seconds of brain activity. The difference between the average oscillation power before and after a stimulation condition indicated change in oscillation amplitude due to the stimulation. Our results showed the stimulation conditions entrained brain activity of a sub-group of participants.
ContributorsChernicky, Jacob Garrett (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171522-Thumbnail Image.png
Description
The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory

The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory system in controlling the lower and upper extremities; however, little is known about the contributions of the orofacial somatosensory system. The overall goal of this study was to determine factors that influence the sensitivity of the orofacial somatosensory system. To measure the somatosensory system's sensitivity, transcutaneous electrical current stimulation was applied to the skin overlaying the trigeminal nerve on the lower portion of the face. After applying stimulation, participants' sensitivity was determined through the detection of the electrical stimuli (i.e., perceptual threshold). The data analysis focused on the impact of (1) stimulation parameters, (2) electrode placement, and (3) motor tasks on the perceptual threshold. The results showed that, as expected, stimulation parameters (such as stimulation frequency and duration) influenced perceptual thresholds. However, electrode placement (left vs. right side of the face) and motor tasks (lip contraction vs. rest) did not influence perceptual thresholds. Overall, these findings have important implications for designing and developing therapeutic neuromodulation techniques based on trigeminal nerve stimulation.
ContributorsKhoury, Maya Elie (Author) / Daliri, Ayoub (Thesis advisor) / Patten, Jake (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2022
172003-Thumbnail Image.png
Description
Objective: Previous studies have observed that adults with dyslexia display a reduced N1 gating when exposed to repetitive stimuli. Robust gating is associated with the ability to recognize familiar stimuli and identify the stimuli that will need novel memory representations formed. This study investigates if the mismatch negativity component in

Objective: Previous studies have observed that adults with dyslexia display a reduced N1 gating when exposed to repetitive stimuli. Robust gating is associated with the ability to recognize familiar stimuli and identify the stimuli that will need novel memory representations formed. This study investigates if the mismatch negativity component in electroencephalographic-produced Event-Related Potentials (ERPs) is affected as well by diminished memory forming in adults with dyslexia. Additionally, signal/ noise processing for auditory-based memory recollection and thus word learning is explored. Methods: Nineteen adults with dyslexia and 18 adult controls participated in a classic auditory oddball electroencephalographic experiment here referred to as DIFF, to indicate that the tones differed in frequency, while incorporating a decision-making task that signified participant tonal discrimination. Mismatch Negativity (MMN) amplitudes (AMPs) and latencies were collected from ERPs. Behavioral data consisting of reaction time (RT) and accuracy (ACC) of tone choice were documented. Results: Group differences for accuracy and reaction time in the DIFF task were highly significant. The dyslexic group produced longer reaction times and with less accuracy than the control group. The Mismatch Negativity amplitude and latency collected did not differ significantly between groups, however, correlations to other variables obtained from similar studies consisting of the same participant group were observed. Linear regression models indicated predictions for accuracy and reaction time results based upon WID scores (Word Identification Test) and SWE scores (Sight Word Efficiency) respectfully. Conclusions: Neural processing speed and the ability to form permanent memory representations of auditory sound bites for retrieval is dampened in dyslexic populations. Significance: To better illuminate and understand the neural mechanisms of dyslexia, specifically auditory processing, with the goal of improving outcomes in individuals with dyslexia through more efficient therapy treatment options.
ContributorsAbrams, Gabrielle Renee (Author) / Peter, Beate (Thesis advisor) / Rogalsky, Corianne (Committee member) / Rao, Aparna (Committee member) / Arizona State University (Publisher)
Created2022