Matching Items (2)
Filtering by

Clear all filters

134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
131112-Thumbnail Image.png
Description
Traumatic brain injury (TBI)—sudden impact or acceleration trauma to the head—is a major cause of death and disability worldwide and is particularly amplified in pediatric cases. TBI is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time where the brain undergoes cognitive development

Traumatic brain injury (TBI)—sudden impact or acceleration trauma to the head—is a major cause of death and disability worldwide and is particularly amplified in pediatric cases. TBI is the leading cause of mortality and morbidity in children and adolescents. Adolescence is a critical time where the brain undergoes cognitive development and brain injury-induced disruptions to these processes can lead to life-long debilitating morbidities. The aim of this study was to determine if exercising spatial and contextual memory circuits using a novel rehabilitation strategy called Peg Forest Rehabilitation (PFR) could mitigate the onset of injury-induced cognitive deficits in juvenile rats subjected to diffuse TBI. The PFR aims to synthesize neuroplasticity-based enrichment to improve cognitive outcomes after TBI. We hypothesized that PFR treatment would mitigate the onset of brain injury-induced cognitive deficits and reduce neuroinflammation. Juvenile male Sprague-Dawley rats (post-natal day 35) were subjected to diffuse traumatic brain injury via midline fluid percussion injury or a control surgery. One-week post-injury, rats were exposed to PFR or cage control exploration (15 min/day). PFR allowed free navigation through random configuration of the peg-filled arena for 10 days over 2 weeks. Control rats remained in home cages in the center of the arena with the peg-board removed for 15 min/day/10 days. One-week post-rehabilitation (one-month post-injury), cognitive performance was assessed for short-term (novel object recognition; NOR), long-term (novel location recognition; NLR), and working (temporal order recognition; TOR) memory performance, calculated as a discrimination index between novel and familiar objects. Tissue was collected for immunohistochemistry and stained for ionized calcium binding proteins (Iba-1) to visualize microglia morphology, and somatostatin. PFR attenuated TBI-induced deficits on the NOR task, where the TBI-PFR treatment group spent significantly more time with the novel object compared with the familiar (*p=0.0046). Regardless of rehabilitation, brain-injured rats had hyper-ramified microglia in the hypothalamus indicated by longer branch lengths and more endpoints per cell compared with uninjured shams. Analysis of somatostatin data is ongoing. In this study, passive, intermittent PFR that involved dynamic, novel spatial navigation, prevented TBI-induced cognitive impairment in adolescent rats. Spatial navigation training may have clinical efficacy and should be further investigated.
ContributorsAftab, Umar (Author) / Rowe, Rachel K. (Thesis director) / Newbern, Jason M. (Thesis director) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05