Matching Items (2)
Filtering by

Clear all filters

135506-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade,

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.
ContributorsGoddery, Emma Nicole (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158647-Thumbnail Image.png
Description
Mild TBI (mTBI) has been associated with subtle executive function (EF) and

cognitive-communication deficits. In bilinguals, there are unique cognitive demands required to control and process two languages effectively. Surprisingly, little is known about the impact of mTBI on EF, communication, and language control in bilinguals. Therefore, the aim of this

Mild TBI (mTBI) has been associated with subtle executive function (EF) and

cognitive-communication deficits. In bilinguals, there are unique cognitive demands required to control and process two languages effectively. Surprisingly, little is known about the impact of mTBI on EF, communication, and language control in bilinguals. Therefore, the aim of this study was to examine the cognitive-communication abilities in bilinguals with a history of mTBI, identify any language control impairments, and explore the relationship between these language control impairments and domain-general cognitive control abilities. To this end, three-hundred and twenty-seven monolingual and bilingual college students with and without mTBI history participated in two experiments. In these experiments, EF, communication, and language control were examined using experimental and clinical tasks as well as self-rating scales. In Experiment 1, there was an interaction between mTBI history and language group (monolinguals vs. bilinguals) in how participants performed on a clinical measure of EF and a verbal fluency task. That is, only bilinguals with mTBI scored significantly lower on these tasks. In addition, there was a significant correlation between errors on a language switching task and performance on non-verbal EF tasks. In Experiment 2, a subgroup of bilinguals with persistent cognitive and behavioral symptoms reported greater everyday communication challenges in their first and second languages. Also, unbalanced bilinguals reported greater EF difficulties than monolinguals and balanced bilinguals regardless of mTBI history. In conclusion, bilinguals may face unique cognitive-communication challenges after mTBI. Factors related to the bilingual experience (e.g., language balance, daily language use) should be

considered in clinical evaluation and future research.
ContributorsAlateeq, Halah (Author) / Azuma, Tamiko (Thesis advisor) / Ratiu, Ileana (Committee member) / Lavoie, Michael (Committee member) / Arizona State University (Publisher)
Created2020