Matching Items (4)
Filtering by

Clear all filters

156354-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may

Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may lead to a transient blood-brain-barrier (BBB) breakdown. Although the BBB dysfunction after TBI may provide a window for therapeutic delivery, the current drug delivery approaches remains largely inefficient due to rapid clearance, inactivation and degradation. One potential strategy to address the current therapeutic limitations is to employ nanoparticle (NP)-based technology to archive greater efficacy and reduced clearance compared to standard drug administration. However, NP application for TBI is challenging not only due to the transient temporal resolution of the BBB breakdown, but also due to the heterogeneous (focal/diffuse) aspect of the disease itself. Furthermore, recent literature suggests sex of the animal influences neuroinflammation/outcome after TBI; yet, the influence of sex on BBB integrity following TBI and subsequent NP delivery has not been previously investigated. The overarching hypothesis for this thesis is that TBI-induced compromised BBB and leaky vasculature will enable delivery of systemically injected NPs to the injury penumbra. This study specifically explored the feasibility and the temporal accumulation of NPs in preclinical mouse models of focal and diffuse TBI. Key findings from these studies include the following. (1) After focal TBI, NPs ranging from 20-500nm exhibited peak accumulation within the injury penumbra acutely (1h) post-injury. (2) A smaller delayed peak of NP accumulation (40nm) was observed sub-acutely (3d) after focal brain injury. (3) Mild diffuse TBI simulated with a mild closed head injury model did not display any measurable NP accumulation after 1h post-injury. (4) In contrast, a moderate diffuse model (fluid percussion injury) demonstrated peak accumulation at 3h post-injury with up to 500 nm size NPs accumulating in cortical tissue. (5) Robust NP accumulation (40nm) was found in female mice compared to the males at 24h and 3d following focal brain injury. Taken together, these results demonstrate the potential for NP delivery at acute and sub-acute time points after TBI by exploiting the compromised BBB. Results also reveal a potential sex dependent component of BBB disruption leading to altered NP accumulation. The applications of this research are far-reaching ranging from theranostic delivery to personalized NP delivery for effective therapeutic outcome.
ContributorsBharadwaj, Vimala Nagabhushana (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Kodibagkar, Vikram D (Thesis advisor) / Kleim, Jeffrey (Committee member) / Tian, Yanqing (Committee member) / Lifshitz, Jonathan (Committee member) / Anderson, Trent R (Committee member) / Arizona State University (Publisher)
Created2018
154988-Thumbnail Image.png
Description
Stromal cell-derived factor-1α (SDF-1α) and its key receptor, CXCR4 are ubiquitously expressed in systems across the body (e.g. liver, skin, lung, etc.). This signaling axis regulates a myriad of physiological processes that range from maintaining of organ homeostasis in adults to, chemotaxis of stem/progenitor and immune cell types after injury.

Stromal cell-derived factor-1α (SDF-1α) and its key receptor, CXCR4 are ubiquitously expressed in systems across the body (e.g. liver, skin, lung, etc.). This signaling axis regulates a myriad of physiological processes that range from maintaining of organ homeostasis in adults to, chemotaxis of stem/progenitor and immune cell types after injury. Given its potential role as a therapeutic target for diverse applications, surprisingly little is known about how SDF-1α mediated signaling propagates through native tissues. This limitation ultimately constrains rational design of interventional biomaterials that aim to target the SDF-1α/CXCR4 signaling axis. One application of particular interest is traumatic brain injury (TBI) for which, there are currently no means of targeting the underlying biochemical pathology to improve prognosis.

Growing evidence suggests a relationship between SDF-1α/CXCR4 signaling and endogenous neural progenitor/stem cells (NPSC)-mediated regeneration after neural injury. Long-term modulation of the SDF-1α/CXCR4 signaling axis is thus hypothesized as a possible avenue for harnessing and amplifying endogenous regenerative mechanisms after TBI. In order to understand how the SDF-1α/CXCR4 signaling can be modulated in vivo, we first developed and characterized a sustained protein delivery platform in vitro. We were the first, to our knowledge, to demonstrate that protein release profiles from poly(D,L,-lactic-co-glycolic) acid (PLGA) particles can be tuned independent of particle fabrication parameters via centrifugal fractioning. This process of physically separating the particles altered the average diameter of a particle population, which is in turn was correlated to critical release characteristics. Secondly, we demonstrated sustained release of SDF-1α from PLGA/fibrin composites (particles embedded in fibrin) with tunable burst release as a function of fibrin concentration. Finally, we contrasted the spatiotemporal localization of endogenous SDF-1α and CXCR4 expression in response to either bolus or sustained release of exogenous SDF-1α. Sustained release of exogenous SDF-1α induced spatially diffuse endogenous SDF-1/CXCR4 expression relative to bolus SDF-1 administration; however, the observed effects were transient in both cases, persisting only to a maximum of 3 days post injection. These studies will inform future systematic evaluations of strategies that exploit SDF-1α/CXCR4 signaling for diverse applications.
ContributorsDutta, Dipankar (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Kleim, Jeffrey (Committee member) / Nikkhah, Mehdi (Committee member) / Sirianni, Rachael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2016
158164-Thumbnail Image.png
Description
Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States each year and is a leading cause of death and disability for children and young adults in industrialized countries. Unfortunately, the molecular and cellular mechanisms of injury progression have yet to be fully elucidated. Consequently, this

Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States each year and is a leading cause of death and disability for children and young adults in industrialized countries. Unfortunately, the molecular and cellular mechanisms of injury progression have yet to be fully elucidated. Consequently, this complexity impacts the development of accurate diagnosis and treatment options. Biomarkers, objective signatures of injury, can inform and facilitate development of sensitive and specific theranostic devices. Discovery techniques that take advantage of mining the temporal complexity of TBI are critical for the identification of high specificity biomarkers.

Domain antibody fragment (dAb) phage display, a powerful screening technique to uncover protein-protein interactions, has been applied to biomarker discovery in various cancers and more recently, neurological conditions such as Alzheimer’s Disease and stroke. The small size of dAbs (12-15 kDa) and ability to screen against brain vasculature make them ideal for interacting with the neural milieu in vivo. Despite these characteristics, implementation of dAb phage display to elucidate temporal mechanisms of TBI has yet to reach its full potential.

My dissertation employs a unique target identification pipeline that entails in vivo dAb phage display and next generation sequencing (NGS) analysis to screen for temporal biomarkers of TBI. Using a mouse model of controlled cortical impact (CCI) injury, targeting motifs were designed based on the heavy complementarity determining region (HCDR3) structure of dAbs with preferential binding to acute (1 day) and subacute (7 days) post-injury timepoints. Bioreactivity for these two constructs was validated via immunohistochemistry. Further, immunoprecipitation-mass spectrometry analysis identified temporally distinct candidate biological targets in brain tissue lysate.

The pipeline of phage display followed by NGS analysis demonstrated a unique approach to discover motifs that are sensitive to the heterogeneous and diverse pathology caused by neural injury. This strategy successfully achieves 1) target motif identification for TBI at distinct timepoints and 2) characterization of their spatiotemporal specificity.
ContributorsMartinez, Briana Isabella (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Lifshitz, Jonathan (Committee member) / Sierks, Michael (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2020
153202-Thumbnail Image.png
Description
Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (post-natal day 20) to repeat weight drop impact. Animals were anesthetized and subjected to sham or rmTBI once per day for 5 days. At 14 days post injury (PID), magnetic resonance imaging (MRI) revealed that rmTBI animals displayed marked cortical atrophy and ventriculomegaly. Specifically, the thickness of the cortex was reduced up to 46% beneath and the ventricles increased up to 970% beneath the impact zone. Immunostaining with the neuron specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker, 4-Aminophyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.
ContributorsGoddeyne, Corey (Author) / Anderson, Trent (Thesis advisor) / Smith, Brian (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014