Matching Items (18)
Filtering by

Clear all filters

135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136265-Thumbnail Image.png
Description
Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes

Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes & Silver 2011. PcTF variants have been constructed via TypeIIS assembly to further investigate this ability to reactive transgenes. Expression in mammalian cells was confirmed via fluorescence microscopy and red fluorescent protein (RFP) expression in cell lysate. Examination of any variation in conferment of binding strength of homologous Polycomb chromodomains (PCDs) to its trimethylated lysine residue target on histone three (H3K27me3) was investigated using a thermal shift assay. Results indicate that PcTF may not be a suitable protein for surveying with SYPRO Orange, a dye that produces a detectable signal when exposed to the hydrophobic domains of the melting protein. A cell line with inducible silencing of a chemiluminescent protein was used to determine the effects PcTF variants had on gene reactivation. Results show down-regulation of the target reporter gene. We propose this may be due to PcTF not binding to its target; this would cause PcTF to deplete transcriptional machinery in the nucleus. Alternatively, the CMV promoter could be sequestering transcriptional machinery in its hyperactive transcription of PcTF leading to widespread down-regulation. Finally, the activation domain used may not be appropriate for this cell type. Future PcTF variants will address these hypotheses by including multiple Polycomb chromodomains (PCDs) to alter the binding dynamics of PcTF to its target, and by incorporating alternative promoters and activation domains.
ContributorsGardner, Cameron Lee (Author) / Haynes, Karmella (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136253-Thumbnail Image.png
Description
The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin,

The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin, fibronectin, and vitronectin) and vascular endothelial growth factor (VEGF) play a role in mediating NPSC behavior through vasophillic interactions. This project attempts to uncover potential VEGF-ECM crosstalk in mediating migration and proliferation. To investigate migration, neurospheres were seeded on ECM-coated wells supplemented with VEGF and without VEGF, and neural outgrowth was measured at days 0, 1, 3, and 8 using differential interference contrast microscopy. Furthermore, single-cell NPSCs were seeded on ECM-coated Transwell membranes with VEGF supplemented media on one side and without VEGF to look at chemotactic migration. Migrated NPSCs were visualized with DAPI nuclear stain and imaged with an inverted fluorescent microscope. To investigate NPSC proliferation, NPSCs were seeded on ECM coated plates as in the radial migration assay and visualized with EdU on day 8. Total proliferation was measured by seeding NPSCs on ECM coated 96-well plates and incubating them with MTT on days 3 and 6. Proliferation was measured using a spectrophotometer at 630nm and 570nm wavelengths. It was found that VEGF-laminin crosstalk synergistically increased radial migration, but may not play a role in chemotactic migration. Understanding the mechanisms behind VEGF-laminin crosstalk in NPSC proliferation and migration may provide crucial information for the design of stem cell transplantation therapies in the future.
ContributorsMillar-Haskell, Catherine Susan (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133856-Thumbnail Image.png
Description
Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to

Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to demonstrate reliable regulators which are programmable and specific, yet also allow for a high dynamic range of control. Inspired by the characteristics of the RNA toehold switch in E. coli, this project attempts utilize artificial introns and complementary trans-acting RNAs for gene regulation in a eukaryote host, S. cerevisiae. Following modification to an artificial intron, splicing control with RNA hairpins was demonstrated. Temperature shifts led to increased protein production likely due to increased splicing due to hairpin loosening. Progress is underway to demonstrate trans-acting RNA interaction to control splicing. With continued development, we hope to provide a programmable, specific, and effective means for translational gene regulation in S. cerevisae.
ContributorsDorr, Brandon Arthur (Author) / Wang, Xiao (Thesis director) / Green, Alexander (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
132852-Thumbnail Image.png
Description
Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs)

Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs) have been repurposed. SPs are composed of a poly(N-isopropylacrylamide-co-acrylic-acid) microgel, conjugated with a fibrin-specific antibody and are biomimetic in their ability to deform and collapse within a fibrin matrix. The objective of this study is to diminish coagulopathy with a single, intravenous injection of SPs, and subsequently decrease neuropathologies. TBI was modeled in animal cohorts using the well-established controlled cortical impact and SPs were injected 2-3 hours post-injury. Control cohorts received no injection. Brain tissue was harvested at acute (24h) and delayed (7 days) time points post-TBI, and fluorescently imaged to quantify reactive astrocytes (GFAP+), microglial morphology and presence (Iba1+), and tissue lesion spared. SP-treatment resulted in significant reduction of GFAP expression at 7 days post-TBI. Furthermore, SP-treatment significantly reduced the percent difference from 24h to 7 days in microglia/macrophage per field compared to the control. For microglial morphology, SP-treated cohorts observed a significant percent difference in endpoints per soma from 24h to 7 days compared to untreated cohorts. However, microglial branch length significantly decreased in percent difference from 24h to 7 days when compared to the control. Finally, tissue sparing did not significantly decrease between 24h and 7 day for SP-treated cohorts as was observed in untreated cohorts, implying inhibition of delayed necrosis. Overall, these results suggest decreased neuroinflammation by 7 days, supporting SPs as potentially therapeutic post-TBI.
ContributorsTodd, Jordan Cecile (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135738-Thumbnail Image.png
Description
The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS),

The purpose of this research was to determine and evaluate glutamate oxidase's ability to detect levels of glutamate as part of a working sensor capable of quantifying and detecting stress within the body in the case of adverse neurological events such as traumatic brain injury. Using electrochemical impedance spectroscopy (EIS), a linear dynamic range of glutamate was detected with a slope of 36.604 z/ohm/[pg/mL], a lower detection limit at 12.417 pg/mL, correlation of 0.97, and an optimal binding frequency of 117.20 Hz. After running through a frequency sweep the binding frequency was determined based on the highest consistent reproducibility and slope. The sensor was found to be specific against literature researched non-targets glucose, albumin, and epinephrine and working in dilutions of whole blood up to a concentration of 25%. With the implementation of Nafion, the sensor had a 250% improvement in signal and 155% improvement in correlation in 90% whole blood, illustrating the promise of a working blood sensor. Future work includes longitudinal studies and utilizing mesoporous carbon as the immobilization platform and incorporating this as part of a continuous, multiplexed blood sensor with glucose oxidase.
ContributorsLam, Alexandria Nicole (Author) / LaBelle, Jeffrey (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05