Matching Items (24)
Filtering by

Clear all filters

156354-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may

Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may lead to a transient blood-brain-barrier (BBB) breakdown. Although the BBB dysfunction after TBI may provide a window for therapeutic delivery, the current drug delivery approaches remains largely inefficient due to rapid clearance, inactivation and degradation. One potential strategy to address the current therapeutic limitations is to employ nanoparticle (NP)-based technology to archive greater efficacy and reduced clearance compared to standard drug administration. However, NP application for TBI is challenging not only due to the transient temporal resolution of the BBB breakdown, but also due to the heterogeneous (focal/diffuse) aspect of the disease itself. Furthermore, recent literature suggests sex of the animal influences neuroinflammation/outcome after TBI; yet, the influence of sex on BBB integrity following TBI and subsequent NP delivery has not been previously investigated. The overarching hypothesis for this thesis is that TBI-induced compromised BBB and leaky vasculature will enable delivery of systemically injected NPs to the injury penumbra. This study specifically explored the feasibility and the temporal accumulation of NPs in preclinical mouse models of focal and diffuse TBI. Key findings from these studies include the following. (1) After focal TBI, NPs ranging from 20-500nm exhibited peak accumulation within the injury penumbra acutely (1h) post-injury. (2) A smaller delayed peak of NP accumulation (40nm) was observed sub-acutely (3d) after focal brain injury. (3) Mild diffuse TBI simulated with a mild closed head injury model did not display any measurable NP accumulation after 1h post-injury. (4) In contrast, a moderate diffuse model (fluid percussion injury) demonstrated peak accumulation at 3h post-injury with up to 500 nm size NPs accumulating in cortical tissue. (5) Robust NP accumulation (40nm) was found in female mice compared to the males at 24h and 3d following focal brain injury. Taken together, these results demonstrate the potential for NP delivery at acute and sub-acute time points after TBI by exploiting the compromised BBB. Results also reveal a potential sex dependent component of BBB disruption leading to altered NP accumulation. The applications of this research are far-reaching ranging from theranostic delivery to personalized NP delivery for effective therapeutic outcome.
ContributorsBharadwaj, Vimala Nagabhushana (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Kodibagkar, Vikram D (Thesis advisor) / Kleim, Jeffrey (Committee member) / Tian, Yanqing (Committee member) / Lifshitz, Jonathan (Committee member) / Anderson, Trent R (Committee member) / Arizona State University (Publisher)
Created2018
135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136253-Thumbnail Image.png
Description
The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin,

The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin, fibronectin, and vitronectin) and vascular endothelial growth factor (VEGF) play a role in mediating NPSC behavior through vasophillic interactions. This project attempts to uncover potential VEGF-ECM crosstalk in mediating migration and proliferation. To investigate migration, neurospheres were seeded on ECM-coated wells supplemented with VEGF and without VEGF, and neural outgrowth was measured at days 0, 1, 3, and 8 using differential interference contrast microscopy. Furthermore, single-cell NPSCs were seeded on ECM-coated Transwell membranes with VEGF supplemented media on one side and without VEGF to look at chemotactic migration. Migrated NPSCs were visualized with DAPI nuclear stain and imaged with an inverted fluorescent microscope. To investigate NPSC proliferation, NPSCs were seeded on ECM coated plates as in the radial migration assay and visualized with EdU on day 8. Total proliferation was measured by seeding NPSCs on ECM coated 96-well plates and incubating them with MTT on days 3 and 6. Proliferation was measured using a spectrophotometer at 630nm and 570nm wavelengths. It was found that VEGF-laminin crosstalk synergistically increased radial migration, but may not play a role in chemotactic migration. Understanding the mechanisms behind VEGF-laminin crosstalk in NPSC proliferation and migration may provide crucial information for the design of stem cell transplantation therapies in the future.
ContributorsMillar-Haskell, Catherine Susan (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
132852-Thumbnail Image.png
Description
Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs)

Traumatic brain injury (TBI) can result in many pathologies, one of which being coagulopathy. TBI can progress to hemorrhagic lesions and increased intercranial pressure leading to coagulopathy. The coagulopathy has been linked to poor clinical outcomes and occurs in 60% of severe TBI cases. To improve hemostasis, synthetic platelets (SPs) have been repurposed. SPs are composed of a poly(N-isopropylacrylamide-co-acrylic-acid) microgel, conjugated with a fibrin-specific antibody and are biomimetic in their ability to deform and collapse within a fibrin matrix. The objective of this study is to diminish coagulopathy with a single, intravenous injection of SPs, and subsequently decrease neuropathologies. TBI was modeled in animal cohorts using the well-established controlled cortical impact and SPs were injected 2-3 hours post-injury. Control cohorts received no injection. Brain tissue was harvested at acute (24h) and delayed (7 days) time points post-TBI, and fluorescently imaged to quantify reactive astrocytes (GFAP+), microglial morphology and presence (Iba1+), and tissue lesion spared. SP-treatment resulted in significant reduction of GFAP expression at 7 days post-TBI. Furthermore, SP-treatment significantly reduced the percent difference from 24h to 7 days in microglia/macrophage per field compared to the control. For microglial morphology, SP-treated cohorts observed a significant percent difference in endpoints per soma from 24h to 7 days compared to untreated cohorts. However, microglial branch length significantly decreased in percent difference from 24h to 7 days when compared to the control. Finally, tissue sparing did not significantly decrease between 24h and 7 day for SP-treated cohorts as was observed in untreated cohorts, implying inhibition of delayed necrosis. Overall, these results suggest decreased neuroinflammation by 7 days, supporting SPs as potentially therapeutic post-TBI.
ContributorsTodd, Jordan Cecile (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12