Matching Items (8)
Filtering by

Clear all filters

148382-Thumbnail Image.png
Description

The aim of this study was to explore cross-sectional and longitudinal aging differences in immediate and delayed visual and verbal memory abilities in individuals with Autism Spectrum Disorder (ASD) compared with neurotypicals (NTs). We measured hippocampal size, fornix fractional anisotropy (FA), and hippocampal and fornix freewater to understand how aging

The aim of this study was to explore cross-sectional and longitudinal aging differences in immediate and delayed visual and verbal memory abilities in individuals with Autism Spectrum Disorder (ASD) compared with neurotypicals (NTs). We measured hippocampal size, fornix fractional anisotropy (FA), and hippocampal and fornix freewater to understand how aging impacts memory structures. Longitudinal findings highlight vulnerabilities in immediate verbal memory and hippocampal volume, while cross-sectional findings indicate fornix freewater may increase at a faster rate in adults with ASD. Future research will examine cognitive and structural sex differences and will study how cognitive measures correlate with structural measures.

ContributorsSullivan, Georgia Rose (Author) / Braden, B. Blair (Thesis director) / Ofori, Edward (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131110-Thumbnail Image.png
Description
Homeopathy is a brand of alternative medicine that has enjoyed a unique form of regulation for many years. This work aims to understand the regulation of homeopathic drugs in the United States by performing a literature review focused on three fronts: (i) homeopathy (theory, history in the United States and

Homeopathy is a brand of alternative medicine that has enjoyed a unique form of regulation for many years. This work aims to understand the regulation of homeopathic drugs in the United States by performing a literature review focused on three fronts: (i) homeopathy (theory, history in the United States and criticisms), (ii) U.S Food and Drug Administration (history and relationship to homeopathy), and (iii) interpretation of the law through reading guidance documents and the Code of Federal Regulations.
In 2015, the FDA began a process to reevaluate and update the regulations surrounding homeopathic products to better fit their present risk-based model. Past regulations were set in 1938; and as the world evolved, these have been found to set inadequate standards. By reviewing the agency’s guidance drafts and core regulatory documents, we come to understand that these changes are motivated by a desire for homeopathic remedies to follow high standards that apply to other products for the benefit of the U.S. consumers. FDA has made significant advances by proposing new Guidances on homeopathic products, listening to homeopathic community and consumers, and withdrawing the Compliance Policy Guide 400.400 issued in 1988.
We recommend for homeopathic manufacturers and practitioners to see the FDA as an ally and cooperate fully with the proposed changes for the regulation the agency gives out. Doing so will give the homeopathic community the best chance at continuing to sell their products and reach their consumers in the United States. In the same token, the FDA should do their best to involve homeopathic professionals in some way in this regulatory process, to encourage participation and compliance by the broader homeopathic community. Doing so ensures a climate of teamwork among different facets of the medical community in the United States.
ContributorsRobayo, Juan Pablo (Author) / Pizziconi, Vincent (Thesis director) / Feigal, David (Committee member) / Frow, Emma (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131928-Thumbnail Image.png
Description
Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that

Motor skill acquisition, the process by which individuals practice and consolidate
movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from
rodents and songbirds suggests that there is a transition away from cortical execution. Recent
evidence indicates that the reticulospinal system plays an important role in integration and
retention of learned motor skills. The brainstem has known age-rated deficits including cell
shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older
adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system
associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the
startle reflex) and corticospinal system (measured via Transcranial Magnetic Stimulation (TMS) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most improvement and retention while individuals with delayed startle responses show the least. We also found that there was no relationship between MEP latencies and improvement and retention. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure and can be used to determine learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
ContributorsRangarajan, Vishvak (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131702-Thumbnail Image.png
Description
The adaptive artificial-intelligence (AI) medical device industry is a novel industry in the United States offering innovations to the healthcare field. The rapid expansion of this industry in recent years has drawn attention from multiple stakeholders causing a heated debate about how to introduce these innovations into the market while

The adaptive artificial-intelligence (AI) medical device industry is a novel industry in the United States offering innovations to the healthcare field. The rapid expansion of this industry in recent years has drawn attention from multiple stakeholders causing a heated debate about how to introduce these innovations into the market while maintaining patient safety and treatment efficacy. Since early 2019, the U.S. Food and Drug Administration (FDA) has been releasing statements in regards to the improvement of regulation for this new technology, but has yet to take further actions. Dilemmas including 1) a difficult regulatory process, 2) a heightening financial burden and 3) looming liability issues, are reasons adaptive AI medical devices have struggled to be advanced. By conducting a thorough analysis of these 3 issues, recognizing the intricacies of them separately and together, this study develops a better understanding of the landscape adaptive AI technology is facing and provides a clearer picture for the future of the industry.
ContributorsOgden, Ravyn Nicole (Author) / Coursen, Jerry (Thesis director) / Pizziconi, Vincent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132702-Thumbnail Image.png
Description
Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests that there is a transition away from cortical execution. Recent

Motor skill acquisition, the process by which individuals practice and consolidate movement to become faster, more accurate and efficient, declines with age. Initial skill acquisition is dominated by cortical structures; however as learning proceeds, literature from rodents and songbirds suggests that there is a transition away from cortical execution. Recent evidence indicates that the reticulospinal system plays an important role in integration and retention of learned motor skills. The brainstem has known age-rated deficits including cell shrinkage & death. Given the role of the reticulospinal system in skill acquisition and older adult’s poor capacity to learn, it begs the question: are delays in the reticulospinal system associated with older adult’s poor capacity to learn?
Our objective was to evaluate if delays in the reticulospinal system (measured via the startle reflex) are correlated to impairment of motor learning in older adults. We found that individuals with fast startle responses resembling those of younger adults show the most learning and retention of that learning while individuals with delayed startle responses show the least. Moreover, linear regression analysis indicated that startle onset latency exists within a continuum of learning outcomes suggesting that startle onset latency may be a sensitive measure to predict learning deficits in older adults. As there exists no method to determine an individual’s relative learning capacity, these results open the possibility of startle, which is an easy and inexpensive behavioral measure, being used to predict learning deficits in older adults to facilitate better dosing during rehabilitation therapy.
ContributorsSchreiber, Joseph James (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Lab-grown food products of animal cell origin, now becoming popularly coined as, ‘Cellular Agriculture’ is a revolutionary breakthrough technology that has the potential to penetrate the lives of every American or citizen of the world. It is important to recognize that the impetus for developing this technology is fueled by

Lab-grown food products of animal cell origin, now becoming popularly coined as, ‘Cellular Agriculture’ is a revolutionary breakthrough technology that has the potential to penetrate the lives of every American or citizen of the world. It is important to recognize that the impetus for developing this technology is fueled by environmental concerns with climate change, rising geopolitical instability, and population growth projections, where farm-grown food has now become a growing national security issue. Notwithstanding its potential, in addition to the necessary technological innovation and economic scalability, the market success of cellular agriculture will depend greatly on regulatory oversight by multiple government agencies without which it can cause undue harm to individuals, populations, and the environment. Thus, it is critical for those appropriate United States governing bodies to ensure that the technology being developed is both safe and of an acceptable quality for human consumption and has no adverse environmental impact. As such, animal foods, derived from farms, previously regulated almost exclusively by the United States Department of Agriculture (USDA) are now being regulated under a joint formal agreement between the US Food and Drug Administration (US FDA) and the USDA if derived from the lab, i.e., lab-grown animal foods. The main reason for joint oversight between the FDA and the USDA is that the FDA has developed the in-house expertise to oversee primary cell harvesting and cell storage, as well as, cell growth and differentiation for the development of 3D-engineered tissues intended for tissue and organ replacement for the emerging field of regenerative medicine. As such, the FDA has been given the authority to oversee the ‘front end’ of lab-grown food processes which relies on the very same processes utilized in engineered human tissues to produce food-grade engineered tissues. Oversight then transitions to the USDA-FSIS (Food Safety and Inspection Service) during the harvesting stage of the cell culture process. The USDA-FSIS then oversees the further production and labeling of these products. Included in the agreement is the understanding that both bodies are responsible for communicating necessary information to each other and collaboratively developing new regulatory actions as needed. However, there currently lacks clarity on some topics regarding certain legal, ethical, and scientific issues. Lab-grown meat products require more extensive regulation than farm-grown animal food products to ensure that they are safe and nutritious for consumption. To do this, CFSAN can create new classes of lab-grown foods, such as ‘lab-grown USDA foods,’ ‘lab-grown non-USDA foods,’ ‘lab-grown extinct foods,’ ‘lab-grown human food tissues,’ and ‘medically activated lab-grown foods.’

ContributorsBanen, Samuel (Author) / Pizziconi, Vincent (Thesis director) / Feigal, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168788-Thumbnail Image.png
Description
Little is known about how cognitive and brain aging patterns differ in older adults with autism spectrum disorder (ASD). However, recent evidence suggests that individuals with ASD may be at greater risk of pathological aging conditions than their neurotypical (NT) counterparts. A growing body of research indicates that older adults

Little is known about how cognitive and brain aging patterns differ in older adults with autism spectrum disorder (ASD). However, recent evidence suggests that individuals with ASD may be at greater risk of pathological aging conditions than their neurotypical (NT) counterparts. A growing body of research indicates that older adults with ASD may experience accelerated cognitive decline and neurodegeneration as they age, although studies are limited by their cross-sectional design in a population with strong age-cohort effects. Studying aging in ASD and identifying biomarkers to predict atypical aging is important because the population of older individuals with ASD is growing. Understanding the unique challenges faced as autistic adults age is necessary to develop treatments to improve quality of life and preserve independence. In this study, a longitudinal design was used to characterize cognitive and brain aging trajectories in ASD as a function of autistic trait severity. Principal components analysis (PCA) was used to derive a cognitive metric that best explains performance variability on tasks measuring memory ability and executive function. The slope of the integrated persistent feature (SIP) was used to quantify functional connectivity; the SIP is a novel, threshold-free graph theory metric which summarizes the speed of information diffusion in the brain. Longitudinal mixed models were using to predict cognitive and brain aging trajectories (measured via the SIP) as a function of autistic trait severity, sex, and their interaction. The sensitivity of the SIP was also compared with traditional graph theory metrics. It was hypothesized that older adults with ASD would experience accelerated cognitive and brain aging and furthermore, age-related changes in brain network topology would predict age-related changes in cognitive performance. For both cognitive and brain aging, autistic traits and sex interacted to predict trajectories, such that older men with high autistic traits were most at risk for poorer outcomes. In men with autism, variability in SIP scores across time points trended toward predicting cognitive aging trajectories. Findings also suggested that autistic traits are more sensitive to differences in brain aging than diagnostic group and that the SIP is more sensitive to brain aging trajectories than other graph theory metrics. However, further research is required to determine how physiological biomarkers such as the SIP are associated with cognitive outcomes.
ContributorsSullivan, Georgia (Author) / Braden, Blair (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Schaefer, Sydney (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2022
157470-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition with early childhood onset, thus most research has focused on characterizing brain function in young individuals. Little is understood about brain function differences in middle age and older adults with ASD, despite evidence of persistent and worsening cognitive symptoms. Functional Magnetic

Autism spectrum disorder (ASD) is a developmental neuropsychiatric condition with early childhood onset, thus most research has focused on characterizing brain function in young individuals. Little is understood about brain function differences in middle age and older adults with ASD, despite evidence of persistent and worsening cognitive symptoms. Functional Magnetic Resonance Imaging (MRI) in younger persons with ASD demonstrate that large-scale brain networks containing the prefrontal cortex are affected. A novel, threshold-selection-free graph theory metric is proposed as a more robust and sensitive method for tracking brain aging in ASD and is compared against five well-accepted graph theoretical analysis methods in older men with ASD and matched neurotypical (NT) participants. Participants were 27 men with ASD (52 +/- 8.4 years) and 21 NT men (49.7 +/- 6.5 years). Resting-state functional MRI (rs-fMRI) scans were collected for six minutes (repetition time=3s) with eyes closed. Data was preprocessed in SPM12, and Data Processing Assistant for Resting-State fMRI (DPARSF) was used to extract 116 regions-of-interest defined by the automated anatomical labeling (AAL) atlas. AAL regions were separated into six large-scale brain networks. This proposed metric is the slope of a monotonically decreasing convergence function (Integrated Persistent Feature, IPF; Slope of the IPF, SIP). Results were analyzed in SPSS using ANCOVA, with IQ as a covariate. A reduced SIP was in older men with ASD, compared to NT men, in the Default Mode Network [F(1,47)=6.48; p=0.02; 2=0.13] and Executive Network [F(1,47)=4.40; p=0.04; 2=0.09], a trend in the Fronto-Parietal Network [F(1,47)=3.36; p=0.07; 2=0.07]. There were no differences in the non-prefrontal networks (Sensory motor network, auditory network, and medial visual network). The only other graph theory metric to reach significance was network diameter in the Default Mode Network [F(1,47)=4.31; p=0.04; 2=0.09]; however, the effect size for the SIP was stronger. Modularity, Betti number, characteristic path length, and eigenvalue centrality were all non-significant. These results provide empirical evidence of decreased functional network integration in pre-frontal networks of older adults with ASD and propose a useful biomarker for tracking prognosis of aging adults with ASD to enable more informed treatment, support, and care methods for this growing population.
ContributorsCatchings, Michael Thomas (Author) / Braden, Brittany B (Thesis advisor) / Greger, Bradley (Thesis advisor) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2019