Matching Items (13)
Filtering by

Clear all filters

131522-Thumbnail Image.png
Description
Increasing energy and environmental problems describe the need to develop renewable chemicals and fuels. Global research has been targeting using microbial systems on a commercial scale for synthesis of valuable compounds. The goal of this project was to refactor and overexpress b6-f complex proteins in cyanobacteria to improve photosynthesis under

Increasing energy and environmental problems describe the need to develop renewable chemicals and fuels. Global research has been targeting using microbial systems on a commercial scale for synthesis of valuable compounds. The goal of this project was to refactor and overexpress b6-f complex proteins in cyanobacteria to improve photosynthesis under dynamic light conditions. Improvement in the photosynthetic system can directly relate to higher yields of valuable compounds such as carotenoids and higher yields of biomass which can be used as energy molecules. Four engineered strains of cyanobacteria were successfully constructed and overexpressed the corresponding four large subunits in the cytochrome b6-f complex. No significant changes were found in cell growth or pigment titer in the modified strains compared to the wild type. The growth assay will be performed at higher and/or dynamic light intensities including natural light conditions for further analysis.
ContributorsNauroth, Benjamin (Author) / Varman, Arul (Thesis director) / Singharoy, Abhishek (Committee member) / Li, Han (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132460-Thumbnail Image.png
Description
Traditional methods of genetic engineering are often limited to relatively few rounds of gene additions, deletions, or alterations due to a lack of additional available antibiotic resistance markers. Counter-selection marker methods can be used to remove and reuse marker genes as desired, resulting in markerless engineered strains and allowing for

Traditional methods of genetic engineering are often limited to relatively few rounds of gene additions, deletions, or alterations due to a lack of additional available antibiotic resistance markers. Counter-selection marker methods can be used to remove and reuse marker genes as desired, resulting in markerless engineered strains and allowing for theoretically unlimited rounds of genetic modifications. The development of suitable counter-selection markers is vital for the development of model organisms such as cyanobacteria as biotechnological platforms.
In the hopes of providing other researchers with a new tool for markerless genetic engineering of cyanobacteria, the toxin MazF from E. coli was developed as a counter-selection marker in the most widely used cyanobacterium, Synechocystis sp. PCC 6803. The mazF gene from E. coli was cloned and inserted into a plasmid vector for downstream transformation of Synechocystis. The plasmid construct also contained two homologous flanking regions for integration of the insert into the Synechocystis genome, a nickel-inducible response regulator and promoter to control MazF expression, and a kanamycin resistance gene to serve as the antibiotic marker. In order to ensure the mazF plasmids could be cloned in a MazF-sensitive E. coli host even with slight promoter leakage, MazF expression was toned down by decreasing the efficiency of translation initiation by inserting base pairs between the ribosome binding site and the start codon of the mazF gene. Following successful cloning by E. coli, the mazF plasmids were then used to transform Synechocystis to create mazF mutant strains. Genomic analysis confirmed the successful transformation and segregation of mazF mutant strains containing the desired marker cassette. Phenotypic analysis revealed both growth arrest and production of mazF transcripts in mazF mutant strains following the addition of nickel to the cell cultures, indicating successful nickel-induced MazF expression as desired.
ContributorsNewell, Phoebe Quynh (Co-author) / Newell, Phoebe (Co-author) / Vermaas, Willem (Thesis director) / Wang, Xuan (Committee member) / Li, Shuqin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137366-Thumbnail Image.png
Description
Human genetic engineering, the manipulation of genomic DNA, is an up and coming field in which soon we will no longer be asking if we can do it, but should we do it? It raises ethical questions regarding autonomy, the concept that an individual is capable of self-governance and making

Human genetic engineering, the manipulation of genomic DNA, is an up and coming field in which soon we will no longer be asking if we can do it, but should we do it? It raises ethical questions regarding autonomy, the concept that an individual is capable of self-governance and making informed decisions, as well as consent of those who undergo genetic manipulation. Along with the ethical questions come issues of equality, equal opportunity of usage, and responsibility of those who use such technologies. The benefits and consequences of genetically engineering humans must be examined, such as the eradication of genetic diseases and the ability to alter ourselves as we desire, as well as the possible unintended outcomes, such as a two-class society and insurmountable inequality. Eugenics and the Transhumanism movement will also be examined, and how they could affect genetic engineering. Regulations will be needed, to limit parents on how they can modify their children and on how adults can modify themselves, to ensure the safe future of genetic engineering.
ContributorsThompson, Carlie Jane (Author) / McGregor, Joan (Thesis director) / Robert, Jason Scott (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-12
Description
Pancreatic ductal adenocarcinoma (PDAC) is a form of pancreatic cancer that affects the exocrine function of the pancreas. PDAC is often hard to diagnose and has shown to also be as difficult to treat. Xeroderma pigmentosum type B (XPB), is a protein can be found in Transcription Factor II Human

Pancreatic ductal adenocarcinoma (PDAC) is a form of pancreatic cancer that affects the exocrine function of the pancreas. PDAC is often hard to diagnose and has shown to also be as difficult to treat. Xeroderma pigmentosum type B (XPB), is a protein can be found in Transcription Factor II Human (TFIIH). It is known to have ATP-ase and helicase activities. The ATP-ase activities could be used to regulate the transcription within super enhancer (SE) networks. Knocking out the ATP-ase activity in XPB in the same way that triptolide does would offer a more individualized therapeutic regiment. A loss of function mutation was tested to identify whether or not the mutation was present within the strand of DNA. In order to explore the role of XPB in pancreatic cancer, a knockout clone was made through the use of the CRISPR/Cas9 genome editing technology to induce a clone in exon 2 of XPB using a plasmid with Green Fluorescent Protein (GFP) selection marker. Once the clones were successfully made, they underwent testing through the use of a Surveyor Mutation Detection Kit for standard electrophoresis. The confirmation of a functional clone lead to GFP, which contained the mutation, being chosen for further testing be compared to the wild type GFP. After the GFP D54H mutation was chosen for further testing, it was then cultured from bacteria and wild type GFP and GFP D54H underwent a restriction enzyme digest. The digest resulted in showing that GFP and GFP D54H were the same on a larger level, and that one of the only ways to prove that the mutation was present was through amplification and analysis using the mutation detection kit.
ContributorsDelgado, Priscilla (Author) / Kiani, Samira (Thesis director) / Noel, Pawan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
148463-Thumbnail Image.png
Description

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are both costly, and inefficient, which necessitates a more sustainable and cheaper alternative. The current study aims at fulfilling that role through genetic engineering of Bacillus subtilis with integration of genes from LCC, Ideonella sakaiensis, and Bacillus subtilis. The plasmid construction was done through restriction cloning. A recombinant plasmid for the expression of LCC was constructed, and transformed into Escherichia coli. Future experiments for this study should include redesigning of primers, with possible combination of signal peptides with genes during construct design, and more advanced assays for effective outcomes.

ContributorsKalscheur, Bethany Ann (Author) / Varman, Arul (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148246-Thumbnail Image.png
Description

The production of sustainable biochemicals has been a major topic of discussion in recent years. Using microbial cells for their production through genetic engineering has been a major topic of research. Cyanobacteria have been considered as a viable candidate for such production. However, the slow growth rate of the cells

The production of sustainable biochemicals has been a major topic of discussion in recent years. Using microbial cells for their production through genetic engineering has been a major topic of research. Cyanobacteria have been considered as a viable candidate for such production. However, the slow growth rate of the cells presents a challenge for the possibility of scaling for use in industrial settings. This project focuses on two different solutions for this problem. The first is using four different engineered strains of Synechocystis sp. PCC 6803 that overexpress the proteins in the b6f complex to improve photosynthetic efficiency. It was found that the strains PetB and PetD showed an increase in growth rate compared to wild type cells. This was especially true under mixotrophic conditions and with a light intensity of 100 µmol photons*m-2s-1 for 3 days. The second solution is by using a newly discovered marine strain of cyanobacteria, Synechococcus sp. PCC 11901, which has a higher reported growth rate. Higher growth rates were achieved for this strain when it was grown mixotrophically with glycerol, and when grown in bubble cultures with aeration.

ContributorsWinsor, Kira Varga (Author) / Varman, Arul Mohzy (Thesis director) / Vermaas, Wim (Committee member) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the

Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the answers to some core questions that have plagued scientists and philosophers alike while entertaining its readers with a punchy, character-driven narrative.
ContributorsMansfield, Izaac (Author) / Finn, Ed (Thesis director) / Frow, Emma (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School for the Future of Innovation in Society (Contributor)
Created2023-05
131840-Thumbnail Image.png
Description
Genetic engineering, a development in science and technology that has enabled the genetic modification of crops among other organisms since the 1970s, has stirred heated debate among various stakeholders in the issue. This struggle is one consisting of two sides set in their own beliefs, refusing to even consider the

Genetic engineering, a development in science and technology that has enabled the genetic modification of crops among other organisms since the 1970s, has stirred heated debate among various stakeholders in the issue. This struggle is one consisting of two sides set in their own beliefs, refusing to even consider the validity of any opposition. As a result, it is difficult to establish common ground and attempt to develop policies and practices that can best suit all members involved while still being able to utilize a breakthrough technology in beneficial ways to society. This research project was conducted upon one particular case in the timeline of genetic modification of crops: the introduction of the Rainbow papaya in Hawaii in 1998 and its subsequent ramifications. The goal was to establish a more detailed understanding of the landscape of a debate that can appear to be based mainly upon the science of genetic engineering. Upon analysis of 22 news articles spanning the years 1999-2019 it was determined that the types of arguments themselves, both in favor of and against GM, fall into a wide range of categories that span much more than simply the science. Arguments both in favor and in opposition are nuanced and actually often seek similar end goals. There is potential to utilize these common goals and priorities in productive ways once stakeholders in the debate are aware of them. Finding commonalities will enable progress in the safe, effective implementation of a technology that has the potential to provide immense benefit in various ways in a manner that considers all perspectives involved.
ContributorsCartwright, Avery (Author) / Frow, Emma (Thesis director) / Bowman, Diana (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131109-Thumbnail Image.png
Description
When an individual is conceived there is a metaphorical roll of the dice. A game of chance is played with their genetics to which they cannot consent. Unlucky players could have inherited mild conditions such as chronic allergies to terrible diseases such as Cystic Fibrosis or Tay-Sachs. Controlling the genetics

When an individual is conceived there is a metaphorical roll of the dice. A game of chance is played with their genetics to which they cannot consent. Unlucky players could have inherited mild conditions such as chronic allergies to terrible diseases such as Cystic Fibrosis or Tay-Sachs. Controlling the genetics of an individual through the use of gene editing technology could be the key to ending this cycle of genetic diseases. Once detrimental diseases are now being cured through direct applications of genetic engineering. Even as we see the uses of genetic engineering technologies change the world, the more “sci-fi” applications have yet to be fully realized or explored. Editing hereditary genes before birth may have the ability to eliminate diseases from entire genetic lines, reduce the possibility for certain cancers and diseases, and perhaps even modify phenotypes in humans to create enhanced humans. Although this scientific field shows promise, it does have its reservations. Like any other scientific field, its ability to benefit humanity depends on its use.
ContributorsSchuler, Jacob (Co-author) / Silva, Anthony (Co-author) / Brian, Jennifer (Thesis director) / Ross, Christian (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05