Matching Items (1)
Filtering by

Clear all filters

131103-Thumbnail Image.png
Description
The development of Corynebacterium glutamicum for the microbial production of high-value products has made this bacterium an industrial workhorse. This metabolically engineered microbe is capable of accumulating and secreting flavonoids, a class of high functioning compounds found in plants. In human health, flavonoids are known to have powerful antioxidant, anti-inflammatory,

The development of Corynebacterium glutamicum for the microbial production of high-value products has made this bacterium an industrial workhorse. This metabolically engineered microbe is capable of accumulating and secreting flavonoids, a class of high functioning compounds found in plants. In human health, flavonoids are known to have powerful antioxidant, anti-inflammatory, anticancer, and antiviral properties which has led the growing interest to produce these compounds commercially. Recent literature seeks to overcome potential pathway bottlenecks to optimize flavonoid production by regulating protein expression within the central carbon, shikimate, chorismate, and fatty acid synthesis pathways. This paper reviews engineering strategies performed to increase the precursor titers of malonyl-CoA, phenylalanine, and tyrosine for increased flavonoid production.
ContributorsBalbas, Elissa (Author) / Varman, Arul (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05