Matching Items (8)
Filtering by

Clear all filters

136321-Thumbnail Image.png
Description
Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in

Background: Measles virus (MV) infections are the main cause of vaccine-preventable death in children younger than 5 years. The World Health Organization (WHO) has estimated there are over 20 million cases of measles every year. Currently, diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. These commercial assays measure reactivity against the immunodominant N antigen and can have a false negative rates of 20-30%. Centralized testing by clinical labs can delay rapid screening in an outbreak setting. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to five individual MV proteins representing 85% of the measles proteome. Methods: MV genes were subcloned into pANT_cGST vector to generate C-terminal GST fusion proteins. Single MV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured using a sandwich ELISA for GST expression using relative light units (RLUs) as readouts. Single MV antigens were used as bait to determine the IgG-dependent reactivity in 12 serum samples obtained from immunized animals with previously determined neutralization titer (NT) and the correlation between NT and ELISA reactivity was determined. Results: Protein expression of five measles genes of interest, M, N, F, H, and L, was measured. L exhibited the strongest protein expression with an average RLU value of 4.34 x 10^9. All proteins were expressed at least 50% greater than control (2.33 x 10^7 RLU). As expected, reactivity against the N was the highest, followed by reactivity against M, F, H and L. The best correlation with NT titer was reactivity against F (R^2 = 0.62). Conclusion: These data indicate that the expression of single MV genes M, N, F, H, and L are suitable antigens for serologic capture analysis of measles immunity.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis director) / Reyes del Valle, Jorge (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137663-Thumbnail Image.png
Description
Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may

Background: The human papillomavirus (HPV) is the cause of virtually all cervical cancer, with over 520,000 new cases and 275,000 deaths annually. Although there are at least 200 unique HPV strains, only “high-risk” types, may progress to cancer. Serum antibodies to HPV oncoproteins are stable and specific markers that may be able to detect high-grade cervical intraepithelial neoplasia (CIN3). Biomarkers have potential as a rapid, point-of-care HPV screening tool for low resource areas in the way that traditional cytology cannot, and HPV DNA testing is not yet able to.
Methods: We have designed a multiplexed magnetics programmable bead ELISA (MagProBE) to profile the immune responses of the proteins from 11 high-risk HPV types and 2 low-risk types—106 genes in total. HPV genes were optimized for human expression and either built with PCR or commercially purchased, and cloned into the Gateway-compatible pANT7_cGST vector for in vitro transcription/translation (IVTT) in a MagProBE array. Anti-GST antibody (Ab) labeling was then used to measure gene expression.
Results: 53/106 (50%) HPV genes have been cloned and tested for expression of protein. 91% of HPV proteins expressed at levels above the background control (MFI = 2288), and the mean expression was MFI = 4318. Codon-optimized genes have also shown a 20% higher expression over non-codon optimized genes.
Conclusion: Although this research is ongoing, it suggests that gene optimization may improve IVTT expression of HPV proteins in human HeLa lysate. Once the remaining HPV proteins have been expression confirmed, the cDNA for each gene will be printed onto slides and tested in serologic assays to identify potential Ab biomarkers to CIN3.
ContributorsResnik, Jack Isiah (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Purushothaman, Immanuel (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
136379-Thumbnail Image.png
Description
Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy.

Methicillin-Resistant Staphylococcus aureus (MRSA) infections are a major challenge to healthcare professionals. Treatment of MRSA is expensive, and otherwise avoidable deaths occur every year in the United States due to MRSA infections. Additionally, such infections lengthen patients’ stays in hospitals, keeping them out of work and adversely affecting the economy. Beta lactam antibiotics used to be highly effective against S. aureus infections, but resistance mechanisms have rendered methicillin, oxacillin, and other beta lactam antibiotics ineffective against these infections. A promising avenue for MRSA treatment lies in the use of synthetic antibodies—molecules that bind with specificity to a given compound. Synbody 14 is an example of such a synbody, and has been designed with MRSA treatment in mind. Mouse model studies have even associated Syn14 treatment with reduced weight loss and morbidity in MRSA-infected mice. In this experiment, in vitro activity of Syn 14 and oxacillin was assessed. Early experiments measured Syn 14 and oxacillin’s effectiveness in inhibiting colony growth in growth media, mouse serum, and mouse blood. Syn14 and oxacillin had limited efficacy against USA300 strain MRSA, though interestingly it was noted that Syn14 outperformed oxacillin in mouse serum and whole mouse blood, indicating the benefits of its binding properties. A second experiment measured the impact that a mix of oxacillin and Syn 14 had on colony growth, as well as the effect of adding them simultaneously or one after the other. While use of either bactericidal alone did not show a major inhibitory effect on USA300 MRSA colony growth, their use in combination showed major decreases in colony growth. Moreover, it was found that unlike other combination therapies, Syn14 and oxacillin did not require simultaneous addition to MRSA cells to achieve inhibition of cell growth. They merely required that Syn14 be added first. This result suggests Syn14’s possible utility in therapeutic settings, as the time insensitivity of synergy removes a major hurdle to clinical use—the difficulty in ensuring that two drugs reach an affected area at the same time. Syn14 remains a promising antimicrobial agent, and further study should focus on its precise mechanism of action and suitability in clinical treatment of MRSA infections.
ContributorsMichael, Alexander (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
131096-Thumbnail Image.png
Description
HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to be produced. The HIV-1 envelope glycoprotein41 and the Gag structural protein have been identified to be particularly important in HIV-1 transcytosis and cytotoxic lymphocyte response, respectively. Enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of glycoprotein (dgp41) comprising the membrane proximal external region (MPER), transmembrane domain and cytoplasmic tail may present a unique and safe way of presenting these proteins in a state mimicking their natural formation. Another form of presenting the immunogenic glycoprotein41, particularly the MPER component, is by presenting it onto the N-terminal of an IgG molecule, thereby creating an IgG fusion molecule. In our lab, both VLPs and IgG fusion molecules are highly expressed and purified within GnGn Nicotiana benthamiana. The results indicated that these recombinant proteins can be assembled properly within plants and can elicit an immune response in mice. This provides a preliminary step in using such Gag/dpg41 VLPs and RIC as present a safe, effective, and inexpensive HIV vaccine.
ContributorsGarcia, Izamar (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133792-Thumbnail Image.png
Description
A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was purified, an ELISA was conducted to validate that the antibody was able to bind to the flavivirus fusion loop.
ContributorsPardhe, Mary (Author) / Mason, Hugh (Thesis director) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / School of Life Sciences (Contributor) / Department of Information Systems (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021
153729-Thumbnail Image.png
Description
CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown

CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown to induce HIV-1 transcytosis-blocking antibodies in mice and rabbits. However, the induction of high-titer MPR specific antibodies with HIV-1 transcytosis blocking ability remains a challenge as the immuno-dominance of CTB overshadows the response to MPR. X-ray crystallography was used to investigate the structure of CTB-MPR with the goal of identifying potential solutions to improve the immune response of MPR. Various CTB-MPR variants were designed using different linkers connecting the two fusion proteins. The procedures for over-expression E. coli and purification have been optimized for each of the variants of CTB-MPR. The purity and oligomeric homogeneity of the fusion protein was demonstrated by electrophoresis, size-exclusion chromatography, dynamic light scattering, and immuno-blot analysis. Crystallization conditions for macroscopic and micro
ano-crystals have been established for the different variants of the fusion protein. Diffraction patterns were collected by using both conventional and serial femto-second crystallography techniques. The two crystallography techniques showed very interesting differences in both the crystal packing and unit cell dimensions of the same CTB-MPR construct. Although information has been gathered on CTB-MPR, the intact structure of fusion protein was not solved as the MPR region showed only weak electron density or was cleaved during crystallization of macroscopic crystals. The MPR region is present in micro
ano-crystals, but due to the severe limitation of the Free Electron Laser beamtime, only a partial data set was obtained and is insufficient for structure determination. However, the work of this thesis has established methods to purify large quantities of CTB-MPR and has established procedures to grow crystals for X-ray structure analysis. This has set the foundation for future structure determination experiments as well as immunization studies.
ContributorsLee, Ho-Hsien (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2015
156067-Thumbnail Image.png
Description
Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene.

Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene. While genetically modified bacteria have historically been used for producing useful biopharmaceuticals like human insulin, plants can assemble much more complicated proteins, like human antibodies, that bacterial systems cannot. As plants do not harbor human pathogens, they are also safer alternatives than animal cell cultures. Additionally, plants can be grown very cheaply, in massive quantities.

In my research, I have studied the genetic mechanisms that underlie gene expression, in order to improve plant-based biopharmaceutical production. To do this, inspiration was drawn from naturally-occurring gene regulatory mechanisms, especially those from plant viruses, which have evolved mechanisms to co-opt the plant cellular machinery to produce high levels of viral proteins. By testing, modifying, and combining genetic elements from diverse sources, an optimized expression system has been developed that allows very rapid production of vaccine components, monoclonal antibodies, and other biopharmaceuticals. To improve target gene expression while maintaining the health and function of the plants, I identified, studied, and modified 5’ untranslated regions, combined gene terminators, and a nuclear matrix attachment region. The replication mechanisms of a plant geminivirus were also studied, which lead to additional strategies to produce more toxic biopharmaceutical proteins. Finally, the mechanisms employed by a geminivirus to spread between cells were investigated. It was demonstrated that these movement mechanisms can be functionally transplanted into a separate genus of geminivirus, allowing modified virus-based gene expression vectors to be spread between neighboring plant cells. Additionally, my work helps shed light on the basic genetic mechanisms employed by all living organisms to control gene expression.
ContributorsDiamos, Andy (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2017