Matching Items (3)
Filtering by

Clear all filters

150407-Thumbnail Image.png
Description
Acceptance of the plant group Martyniaceae as a distinct family has long been questioned. Previously placed in the family Pedaliaceae, the Martyniaceae have been allied to numerous other families within the order Lamiales. The objectives of this study include the investigation of the placement of the Martyniaceae within the order

Acceptance of the plant group Martyniaceae as a distinct family has long been questioned. Previously placed in the family Pedaliaceae, the Martyniaceae have been allied to numerous other families within the order Lamiales. The objectives of this study include the investigation of the placement of the Martyniaceae within the order Lamiales using molecular data (chloroplast DNA sequences), the further examination of the internal relationships of the Martyniaceae using an expanded nuclear and chloroplast sequences data set, and the construction of a taxonomic treatment of the family that includes all published names and taxa in the Martyniaceae. An analysis of the Lamiales using two chloroplast gene regions (ndhF and rps16) reveals that the Martyniaceae should be segregated from the family Pedaliaceae, but is not able to support the placement of any of its putatively-related families as sister to the Martyniaceae. Sequences from 151 taxa of the Lamiales are included in the analysis, including six representatives from the Martyniaceae. An analysis of the Martyniaceae using three chloroplast gene regions (psbA-trnH spacer, trnQ-5'rps16 intergenic spacer, and trnS-trnG-trnG spacer and intron) and the Internal Transcribed Spacer resolves two major clades within the Martyniaceae corresponding to the North American taxa (Martynia and Proboscidea) and the South American taxa (Craniolaria, Holoregmia, and Ibicella). Sequences from all five genera and 15 taxa were included in the analysis. Results from the molecular phylogenetic analyses are incorporated into a revised taxonomic treatment of the family. Five genera and thirteen species are recognized for the family Martyniaceae.
ContributorsGutiérrez, Raúl (Author) / Wojciechowski, Martin F (Thesis advisor) / Pigg, Kathleen B (Committee member) / Landrum, Leslie R (Committee member) / Butterworth, Charlie (Committee member) / Arizona State University (Publisher)
Created2011
151112-Thumbnail Image.png
Description
The Arizona State University Herbarium began in 1896 when Professor Fredrick Irish collected the first recorded Arizona specimen for what was then called the Tempe Normal School - a Parkinsonia microphylla. Since then, the collection has grown to approximately 400,000 specimens of vascular plants and lichens. The most recent project

The Arizona State University Herbarium began in 1896 when Professor Fredrick Irish collected the first recorded Arizona specimen for what was then called the Tempe Normal School - a Parkinsonia microphylla. Since then, the collection has grown to approximately 400,000 specimens of vascular plants and lichens. The most recent project includes the digitization - both the imaging and databasing - of approximately 55,000 vascular plant specimens from Latin America. To accomplish this efficiently, possibilities in non-traditional methods, including both new and existing technologies, were explored. SALIX (semi-automatic label information extraction) was developed as the central tool to handle automatic parsing, along with BarcodeRenamer (BCR) to automate image file renaming by barcode. These two developments, combined with existing technologies, make up the SALIX Method. The SALIX Method provides a way to digitize herbarium specimens more efficiently than the traditional approach of entering data solely through keystroking. Using digital imaging, optical character recognition, and automatic parsing, I found that the SALIX Method processes data at an average rate that is 30% faster than typing. Data entry speed is dependent on user proficiency, label quality, and to a lesser degree, label length. This method is used to capture full specimen records, including close-up images where applicable. Access to biodiversity data is limited by the time and resources required to digitize, but I have found that it is possible to do so at a rate that is faster than typing. Finally, I experiment with the use of digital field guides in advancing access to biodiversity data, to stimulate public engagement in natural history collections.
ContributorsBarber, Anne Christine (Author) / Landrum, Leslie R. (Thesis advisor) / Wojciechowski, Martin F. (Thesis advisor) / Gilbert, Edward (Committee member) / Lafferty, Daryl (Committee member) / Arizona State University (Publisher)
Created2012
153990-Thumbnail Image.png
Description
The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history,

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.
ContributorsCoburn, Francis S (Author) / Stromberg, Juliet C. (Thesis advisor) / Landrum, Leslie R (Thesis advisor) / Makings, Elizabeth (Committee member) / Fertig, Walter F (Committee member) / Arizona State University (Publisher)
Created2015