Matching Items (36)
Filtering by

Clear all filters

148119-Thumbnail Image.png
Description

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from their solitarious phase to their gregarious phase where they congregate and begin marching and eventually swarming together. These swarms, often billions strong, can consume the vegetation of enormous swaths of land and can travel hundreds of kilometers in a single day producing a complex threat to food security. To better understand the biology of these important pests we explored the gut microbiome of the South American locust (Schistocerca cancellata). We hypothesized generally that the gut microbiome in this species would be critically important as has been shown in many other species. We extracted and homogenized entire guts from male S. cancellata, and then extracted gut microbiome genomic DNA. Genomic DNA was then confirmed on a gel. The initial extractions were of poor quality for sequencing, but subsequent extractions performed by collaborators during troubleshooting at Southern Illinois University Edwardsville proved more useful and were used for PCR. This resulted in the detections of the following bacterial genera in the gut of S. cancellata: Enterobacter, Enterococcus, Serratia, Pseudomonas, Actinobacter, and Weisella. With this data, we are able to speculate about the physiological roles that they hold within the locust gut generating hypotheses for further testing. Understanding the microbial composition of this species’ gut may help us better understand the locust in general in an effort to more sustainably manage them.

ContributorsGrief, Dustin (Author) / Overson, Rick (Thesis director) / Cease, Arianne (Committee member) / Peterson, Brittany (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
151797-Thumbnail Image.png
Description
The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and physiological, that bacteria employ to circumvent the bactericidal activities of AMPs. These understandings will allow researchers to overcome challenges posed with the development of new drug therapies; as well as identify, at a fundamental level, how bacteria are able to adapt and survive within varied host environments. Here, results are presented from the first reported large scale, systematic screen in which the Keio collection of ~4,000 Escherichia coli deletion mutants were challenged against physiologically significant AMPs to identify genes required for resistance. Less than 3% of the total number of genes on the E. coli chromosome was determined to contribute to bacterial resistance to at least one AMP analyzed in the screen. Further, the screen implicated a single cellular component (enterobacterial common antigen, ECA) and a single transporter system (twin-arginine transporter, Tat) as being required for resistance to each AMP class. Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent analyses were able to identify a two-component system, CpxR/CpxA, as a global regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A members, as well as members found in this study, were identified in the screen. Notably, CpxR/A was found to transcriptionally regulate the gene cluster responsible for the biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly correlates with a physiologically significant cellular component that appears to globally contribute to bacterial resistance to AMPs.
ContributorsWeatherspoon-Griffin, Natasha (Author) / Shi, Yixin (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Misra, Rajeev (Committee member) / Nickerson, Cheryl (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
150878-Thumbnail Image.png
Description
Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that

Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that control virulence factors have been successfully used as measure to construct live attenuated bacterial vaccines for mammals and birds. Here, I hypothesize that evolutionary conserved genes, which control virulence factors or are essential for bacterial physiology in Enterobacteriaceae, could be used as universal tools to design live attenuated recombinant bacterial vaccines from fish to mammals. The evolutionary conserved genes that control virulence factors, crp and fur, and the essential gene for the synthesis of the cell wall, asd, were studied in Edwardsiella ictaluri to develop a live recombinant vaccine for fish host. The genus Edwardsiella is one of the most ancient represent of the Enterobacteriaceae family. E. ictaluri, a host restricted pathogen of catfish (Ictalurus punctatus), is the causative agent of the enteric septicemia and one of the most important pathogens of this fish aquaculture. Although, crp and fur control different virulence factors in Edwardsiella, in comparison to other enterics, individual deletion of these genes triggered protective immune response at the systemic and mucosal level of the fish. Deletion of asdA gene allowed the creation of a balanced-lethal system to syntheses heterologous antigens. I concluded that crp, fur and asd could be universally used to develop live attenuate recombinant Enterobacteriaceae base vaccines for different hosts.
ContributorsSantander Morales, Javier Alonso (Author) / Curtiss, Roy Iii (Thesis advisor) / Chandler, Douglas (Committee member) / Chang, Yung (Committee member) / Shi, Yixin (Committee member) / Arizona State University (Publisher)
Created2012
151143-Thumbnail Image.png
Description
Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of

Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of these three proteins (and many of their homologs) are known, the exact mechanisms of interaction are still poorly understood. By mutational analysis of the TolC turn 1 residues, a drug hypersensitive mutant has been identified which is defective in functional interactions with AcrA and AcrB. Antibiotic resistant revertants carry alterations in both TolC and AcrA act by stabilizing functional complex assembly and opening of the TolC aperture, as monitored by stability of a labile TolC mutant and sensitivity to vancomycin, respectively. Alterations in the AcrB periplasmic hairpin loops lead to a similar antibiotic hypersensitivity phenotype and destabilized complex assembly. Likewise, alterations in TolC which constitutively open the aperture suppress this antibiotic sensitivity. Suppressor alterations in AcrA and AcrB partially restore antibiotic resistance by mediating stability of the complex. The AcrA suppressor alterations isolated in these studies map to the three crystallized domains and it is concluded they alter the AcrA conformation such that it is permanently fixed in an active state, which wild type only transiently goes through when activated by AcrB. Through this genetic evidence, a direct interaction between TolC and AcrB which is stabilized by AcrA has been proposed. In addition to stabilizing the interactions between TolC and AcrB, AcrA is also responsible for triggering opening of the TolC aperture by mediating energy flow from AcrB to TolC. By permanently altering the conformation of AcrA, suppressor mutants allow defective TolC or AcrB mutants to regain functional interactions lost by the initial mutations. The data provide the genetic proof for direct interaction between AcrB and that AcrA mediated opening of TolC requires AcrB as a scaffold.
ContributorsWeeks, Jon William (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Shi, Yixin (Committee member) / Clark-Curtiss, Josephine (Committee member) / Arizona State University (Publisher)
Created2012
136077-Thumbnail Image.png
Description
Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a

Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a tool for the purification and characterization of these glycoproteins from patient specimens. Materials and Methods: To identify potential Coccidioides-binding lectins, lectin-based immunohistochemistry was performed using a panel of 21 lectins on lung tissue from human patients infected with Coccidioides. Enzyme-Linked Immunosorbent Assays (ELISAs) were used to confirm and test candidate Coccidioides-binding lectins for their ability to bind to proteins from antigen preparations of laboratory-grown Coccidioides. Inhibition IHC and ELISAs were used to confirm binding properties of these lectins. SDS-PAGE and mass spectrometry were performed on eluates from coccidioidal antigen preparations run through lectin-affinity chromatography columns to characterize and identify lectin-binding coccidioidal glycoproteins. Results: Two GlcNAc-binding lectins, GSLII and sWGA, bound specifically to spherules and endospores in infected human lung tissue, and not to adjacent lung tissue. The binding of these lectins to both Coccidioides proteins in lung tissue and to coccidioidal antigen preparations was confirmed to have lectin-like characteristics. SDS-PAGE analysis of eluates from lectin-affinity chromatography demonstrated that GSLII and sWGA bind to coccidioidal glycoproteins. Mass spectrometric identification of the top ten lectin affinity-purified glycoproteins demonstrated that GSLII and sWGA share affinity to a common set of coccidioidal glycoproteins. Conclusion: This is the first report of lectins that bind specifically to Coccidioides spherules and endospores in infected humans. These lectins may have the potential to serve as tools for a better method of detection and diagnosis of Valley Fever.
ContributorsChowdhury, Yasmynn (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Magee, Mitchell (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136871-Thumbnail Image.png
Description
Viral infections are a significant cause of disease in humans. While some viral diseases have been eliminated, many more continue to infect millions. Viral infections are challenging to treat because viruses use host cell machinery to replicate, so it is difficult to develop drugs that can target viruses. Normally, the

Viral infections are a significant cause of disease in humans. While some viral diseases have been eliminated, many more continue to infect millions. Viral infections are challenging to treat because viruses use host cell machinery to replicate, so it is difficult to develop drugs that can target viruses. Normally, the host’s immune system is capable of destroying the virus, but during chronic infections it becomes exhausted and T cells lose their effector functions necessary for the clearance of the virus. IL-2 can help relieve this exhaustion, but causes toxicity to the body. In mice infected with chronic LCMV, IL-2 administration causes death due to pulmonary hemorrhage. CD4 deficient mice were infected with chronic LCMV and then dosed with IL-2 and survived, but mice that were deficient for CD8 T cells died, indicating that toxicity was mediated by CD8 T cells. CD8 T cells can kill infected host cells directly by producing perforin, or can produce cytokines like IFN-γ and TNF to further activate the immune system and mediate killing. Mice that were deficient in perforin died after IL-2 administration, as well as mice that were deficient in IFN-γ. Mice deficient in TNF, however, survived, indicating that TNF was mediating the toxicity in response to IL-2. There are two different receptors for TNF, p55 and p75. p55 is known as TNFR1 and has been implicated in apoptosis of virally infected cells. P75 is known as TNFR2 and is associated more with inflammation in response to infection. My hypothesis was that if TNFR2 was knocked out, infected mice would survive IL-2 dosing. When single knockouts of TNFR1 and 2 were used in an experiment however, it was found that either receptor is capable of mediating toxicity, as both experimental groups failed to survive. This is relevant to current IL-2 therapies because there is no way to eliminate a single receptor in order to reduce toxicity. Further studies exploring the anti-viral capabilities of IFN-γ are suggested.
ContributorsJarvis, Jordan Alisa (Author) / Blattman, Joseph (Thesis director) / Denzler, Karen (Committee member) / McAfee, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137143-Thumbnail Image.png
Description
Methane (CH4) is very important in the environment as it is a greenhouse gas and important for the degradation of organic matter. During the last 200 years the atmospheric concentration of CH4 has tripled. Methanogens are methane-producing microbes from the Archaea domain that complete the final step in breaking down

Methane (CH4) is very important in the environment as it is a greenhouse gas and important for the degradation of organic matter. During the last 200 years the atmospheric concentration of CH4 has tripled. Methanogens are methane-producing microbes from the Archaea domain that complete the final step in breaking down organic matter to generate methane through a process called methanogenesis. They contribute to about 74% of the CH4 present on the Earth's atmosphere, producing 1 billion tons of methane annually. The purpose of this work is to generate a preliminary metabolic reconstruction model of two methanogens: Methanoregula boonei 6A8 and Methanosphaerula palustris E1-9c. M. boonei and M. palustris are part of the Methanomicrobiales order and perform hydrogenotrophic methanogenesis, which means that they reduce CO2 to CH4 by using H2 as their major electron donor. Metabolic models are frameworks for understanding a cell as a system and they provide the means to assess the changes in gene regulation in response in various environmental and physiological constraints. The Pathway-Tools software v16 was used to generate these draft models. The models were manually curated using literature searches, the KEGG database and homology methods with the Methanosarcina acetivorans strain, the closest methanogen strain with a nearly complete metabolic reconstruction. These preliminary models attempt to complete the pathways required for amino acid biosynthesis, methanogenesis, and major cofactors related to methanogenesis. The M. boonei reconstruction currently includes 99 pathways and has 82% of its reactions completed, while the M. palustris reconstruction includes 102 pathways and has 89% of its reactions completed.
ContributorsMahendra, Divya (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / Wang, Xuan (Committee member) / Stout, Valerie (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / School of Life Sciences (Contributor) / Biomedical Informatics Program (Contributor)
Created2014-05