Matching Items (156)
Filtering by

Clear all filters

161519-Thumbnail Image.png
Description
Human leukocyte antigen (HLA) is a group of proteins that the human immune system uses to detect pathogens. HLA is highly polymorphic, especially in the peptide-binding groove, which allows the binding of a diverse range of peptides including peptides produced by pathogens. Hepatitis B virus (HBV), is a pathogen that

Human leukocyte antigen (HLA) is a group of proteins that the human immune system uses to detect pathogens. HLA is highly polymorphic, especially in the peptide-binding groove, which allows the binding of a diverse range of peptides including peptides produced by pathogens. Hepatitis B virus (HBV), is a pathogen that can cause liver disease. Chronic HBV infection, if left untreated, can lead to hepatocellular carcinoma, the most common form of liver cancer. In this paper, the association of Class I and II HLA with HBV-mediated liver cancer in patients of East Asian and European ancestry was studied. Results showed that, in the initial combined ancestry analysis, some alleles from all HLA types are associated with HBV-mediated liver cancer. However, once stratified by population ancestry, most of the alleles are no longer significant but still associate with HBV-mediated liver cancer in the same directions. In contrast, HLA-DP is the only HLA with haplotypes that are significantly different before and after stratification by ancestry. Notably, DPA10103-DPB10401, a previously known protective haplotype in the Asian population, is associated negatively with HBV-mediated liver cancer in both East Asian and European populations. Additionally, DPA10202-DPB10501, a known risk haplotype in the Asian population, is associated positively with HBV-mediated liver cancer patients of European ancestry. To understand how HLA-DP is associated with HBV-mediated liver cancer, the binding affinity of HLA-DP to all peptides generated from HBV coding sequences of genotypes A-H was predicted. It was speculated that an individual with HLA types that can bind strongly to HBV peptides will be more likely to clear viral infection whereas an individual with HLA types that fail to bind strongly to HBV peptides will be less likely to clear viral infection, thus developing chronic infection. Results showed that DPA10103-DPB10401 binds strongly to HBV peptides (<50nM) whereas DPA10202-DPB10501 does not bind strongly to any HBV peptides (>50nM), consistent with the speculation that the binding affinity of HBV peptides to HLA will influence the association of HLA with HBV-mediated liver cancer.
ContributorsYap, Yan Rou (Author) / Wilson, Melissa (Thesis advisor) / Lim, Efrem (Thesis advisor) / Buetow, Kenneth (Committee member) / Arizona State University (Publisher)
Created2021
161493-Thumbnail Image.png
Description
Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown

Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown to be highly differentially expressed in E. coli upon styrene exposure were further investigated by testing the effects of their deletion and overexpression on styrene tolerance and growth. It was found that plsX, a gene responsible for the phospholipid formation in membranes, had the most promising results when overexpressed at 10 µM IPTG, with a relative OD600 of 706 ± 117% at 175 mg/L styrene when compared to the control plasmid at the same concentration. This gene is likely to be effective target when engineering styrene- and other aromatic-producing strains, increasing titers by reducing their cytotoxicity.In the second study, the goal is to engineer the cyanobacterium Synechococcus sp. PCC 7002 for the overproduction of L-serine. As a robust, photosynthetic bacteria, it has potential for being used in such-rich states to capture CO2 and produce industrially relevant products. In order to increase L-serine titers, a key degradation gene, ilvA, must be removed. While ilvA is responsible for degrading L-serine into pyruvate, it is also responsible for initiating the only known pathway for the production of isoleucine. Herein, we constructed a plasmid containing the native A0730 gene in order to investigate its potential to restore isoleucine production. If functional, a Synechococcus sp. PCC 7002 ΔilvA strain can then be engineered with minimal effects on growth and an expected increase in L-serine accumulation.
ContributorsAbed, Omar (Author) / Nielsen, David R (Thesis advisor) / Varman, Arul M (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2021
161499-Thumbnail Image.png
Description
Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along

Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along with the understanding of the biological and chemical activities that drive those processes. The kinetics and stoichiometry of traditional and shortcut nitrogen removal reactions are generally well understood to date. However, the thermodynamics of those processes are complex and deserve additional research to better understand the dominant factors that drive cell synthesis. Additionally, the implementation of nitrogen shortcut techniques can reduce the footprint of wastewater treatment processes that implement nitrogen removal by approximately 5 percent and can reduce operating costs by between 12 and 26 percent annually. Combined, nitrogen shortcut techniques can contribute to significant reduction in the long-term cost to operate, due to lower energy and consumable requirements, fast reaction times resulting in shorter solids retention times, and improvement efficiency in nitrogen removal from wastewater. This dissertation explores and defines the dominant factors that contribute to the success of efficiencies in traditional and shortcut nitrogen removal techniques, focusing on the natural microbiological processes. The culmination of these efforts was used to develop decision matrices to promote consideration of nitrogen shortcut techniques by practitioners during conceptual planning and design of wastewater treatment facilities.
ContributorsTack, Frederick Henry (Author) / Fox, Peter (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Abbaszadegan, Morteza (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2021
161438-Thumbnail Image.png
Description
The family Cactaceae is extremely diverse and has a near global distribution yet very little has been described regarding the community of viruses that infect or are associated with cacti. This research characterizes the diversity of viruses associated with Cactaceae plants and their evolutionary aspects. Five viruses belonging to the

The family Cactaceae is extremely diverse and has a near global distribution yet very little has been described regarding the community of viruses that infect or are associated with cacti. This research characterizes the diversity of viruses associated with Cactaceae plants and their evolutionary aspects. Five viruses belonging to the economically relevant plant virus family Geminiviridae were identified, initially, two novel divergent geminiviruses named Opuntia virus 1 (OpV1) and Opuntia virus 2 (OpV2) and Opuntia becurtovirus, a new strain within the genus Becurtovirus. These three viruses were also found in co-infection. In addition, two known geminiviruses, the squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified infecting Cactaceae plants and other non-cactus plants in the USA and Mexico. Both SLCV and WCSV are known to cause severe disease in cultivated Cucurbitaceae plants in the USA and Middle East, respectively. This study shows that WCSV was introduced in the America two times, and it is the first identification of this virus in the USA, demonstrating is likely more widespread in North America. These findings along with the Opuntia becurtovirus are probable events of spill-over in agro-ecological interfaces. A novel circular DNA possibly bipartite plant-infecting virus that encodes protein similar to those of geminiviruses was also identified in an Opuntia discolor plant in Brazil, named utkilio virus, but it is evolutionary distinct likely belonging to a new taxon. Viruses belonging to the ssDNA viral family Genomoviridae are also described and those thus far been associated with fungi hosts, so it is likely the ones identified in plants are associated with their phytobiome. Overall, the results of this project provide a molecular and biological characterization of novel geminiviruses and genomoviruses associated with cacti as well as demonstrate the impact of agro-ecological interfaces in the spread of viruses from or to native plants. It also highlights the importance of viral metagenomics studies in exploring virus diversity and evolution given then amount of virus diversity identified. This is important for conservation and management of cacti in a global scale, including the relevance of controlled movement of plants within countries.
ContributorsSalgado Fontenele, Rafaela (Author) / Varsani, Arvind (Thesis advisor) / Wilson, Melissa (Committee member) / Majure, Lucas (Committee member) / Van Doorslaer, Koenraad (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2021
156917-Thumbnail Image.png
Description
Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to

Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to remove Cs from water; however, they are not efficient at removing Cs when present at low concentrations of about 10 parts-per-billion (ppb), typical of concentrations found in the radioactive contaminated sites.

The objective of this study was to develop an innovative and simple method to remove Cs+ present at low concentrations by engineering a proteoliposome transporter composed of an uptake protein reconstituted into a liposome vesicle. To achieve this, the uptake protein, Kup, from E. coli, was isolated through protein extraction and purification procedures. The new and simple extraction methodology developed in this study was highly efficient and resulted in purified Kup at ~1 mg/mL. A new method was also developed to insert purified Kup protein into the bilayers of liposome vesicles. Finally, removal of CsCl (10 and 100 ppb) was demonstrated by spiking the constructed proteoliposome in lab-fortified water, followed by incubation and ultracentrifugation, and measuring Cs+ with inductively coupled plasma mass spectrometry (ICP-MS).

The ICP-MS results from testing water contaminated with 100 ppb CsCl, revealed that adding 0.1 – 8 mL of Kup proteoliposome resulted in 0.29 – 12.7% Cs removal. Addition of 0.1 – 2 mL of proteoliposome to water contaminated with 10 ppb CsCl resulted in 0.65 – 3.43% Cs removal. These removal efficiencies were greater than the control, liposome with no protein.

A linear relationship was observed between the amount of proteoliposome added to the contaminated water and removal percentage. Consequently, by adding more volumes of proteoliposome, removal can be simply improved. This suggests that with ~ 60-70 mL of proteoliposome, removal of about 90% can be achieved. The novel technique developed herein is a contribution to emerging technologies in the water and wastewater treatment industry.
ContributorsHakim Elahi, Sepideh (Author) / Conroy-Ben, Otakuye (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2018
190813-Thumbnail Image.png
Description
Groundwater contamination is of environmental and human health concern. Bioremediation is a nature-based method for contaminant treatment. Bioremediation, which relies on the ability of microorganisms to destroy or transform contaminants, must be reliable and cost-competitive in comparison to more traditional treatment methods. Two hurdles must be overcome

Groundwater contamination is of environmental and human health concern. Bioremediation is a nature-based method for contaminant treatment. Bioremediation, which relies on the ability of microorganisms to destroy or transform contaminants, must be reliable and cost-competitive in comparison to more traditional treatment methods. Two hurdles must be overcome to enhance bioremediation’s effectiveness and competitiveness: i) being able to degrade recalcitrant compounds, and ii) being able to control the growth rate and location of microorganisms involved in bioremediation in the subsurface. My dissertation adds foundational knowledge and engineering application on how to biodegrade recalcitrant emerging and legacy halogenated compounds. Generating biotransformation knowledge on the recalcitrant emerging contaminants called per- and polyfluoroalkyl substances (PFAS) may lead to solutions for protecting both people and the planet. In my dissertation, I analyzed PFAS biotransformation and microbial defluorination literature via meta-analytical and bibliometric methods to identify unexplored topics and experimental conditions. The metanalytical work identified trends in PFAS microbial biotransformation science to inform future experimental design. The second hurdle which must be overcome is being able to control bacterial growth in the subsurface. During bioremediation implementation microbial overgrowth may clog injection wells and the subsurface, leading to reduced porosity and treatment efficacy. Contaminant treatment schemes based on aerobic cometabolism frequently exhibit overgrowth at subsurface injection points for O2 (the electron acceptor) and a labile hydrocarbon (e.g., propane). My dissertation work experimentally evaluated acetylene as a microbial inhibitor for use in controlling microbial overgrowth during trichloroethene (TCE) aerobic cometabolism. I demonstrated that acetylene reduces the likelihood of microbial overgrowth of TCE-degrading microorganisms in soil-free microcosms and aquifer soil columns while retaining TCE degradation capacity. Cumulatively, my dissertation provides foundational knowledge for academics and bioremediation practitioners to develop robust and reliable bioremediation technologies.
ContributorsSkinner, Justin Paul (Author) / Delgado, Anca G. (Thesis advisor) / Rittmann, Bruce E (Committee member) / Chu, Min Ying Jacob (Committee member) / Arizona State University (Publisher)
Created2023