Matching Items (40)
Filtering by

Clear all filters

152583-Thumbnail Image.png
Description
The prevalence of antibiotic resistant bacterial pathogens has increased since the introduction of penicillin in the 1940s. Insufficient development of novel antibacterial agents is leaving us with a failing arsenal of therapies to combat these pathogenic organisms. We have identified a clay mineral mixture (designated CB) that exhibits in vitro

The prevalence of antibiotic resistant bacterial pathogens has increased since the introduction of penicillin in the 1940s. Insufficient development of novel antibacterial agents is leaving us with a failing arsenal of therapies to combat these pathogenic organisms. We have identified a clay mineral mixture (designated CB) that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens, yet the antibacterial mechanism of action remains unknown. Antibacterial susceptibility testing of four different clay samples collected from the same source revealed that these natural clays had markedly different antibacterial activity. X-ray diffraction analyses of these minerals revealed minor mineralogical differences across the samples; however, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate resulted in antibacterial activity against E. coli and MRSA, confirming the role of these ions in the in vitro antibacterial clay mixture leachates. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to CB-L. Supplementation of CB-L with ROS scavengers eliminated oxidative damage in E. coli, but did not rescue the cells from killing, indicating that in vitro killing is due to direct metal toxicity and not to indirect oxidative damage. Finally, we ion-exchanged non-antibacterial clays with Fe, Co, Cu, and Zn and established antibacterial activity in these samples. Treatment of MRSA skin infections with both natural and ion-exchanged clays significantly decreased the bacterial load after 7 days of treatment. We conclude that 1) in vitro clay-mediated killing is due to toxicity associated directly with released metal ions and not to indirect oxidative damage and 2) that in vivo killing is due to the physical properties of the clays rather than metal ion toxicity.
ContributorsOtto, Caitin Carol (Author) / Haydel, Shelley (Thesis advisor) / Stout, Valerie (Committee member) / Roberson, Robby (Committee member) / Sandrin, Todd (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2014
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
135188-Thumbnail Image.png
Description
Space microbiology, or the study of microorganisms in space, has significant applications for both human spaceflight and Earth-based medicine. This thesis traces the evolution of the field of space microbiology since its creation in 1935. Beginning with simple studies to determine if terrestrial life could survive spaceflight, the field of

Space microbiology, or the study of microorganisms in space, has significant applications for both human spaceflight and Earth-based medicine. This thesis traces the evolution of the field of space microbiology since its creation in 1935. Beginning with simple studies to determine if terrestrial life could survive spaceflight, the field of space microbiology has grown to encompass a substantial body of work that is now recognized as an essential component of NASA' research endeavors. Part one provides an overview of the early period of space microbiology, from high-altitude balloon and rocket studies to work conducted during the Apollo program. Part two summarizes the current state of the field, with a specific focus on the revolutionary contributions made by the Nickerson lab at the Biodesign Institute at ASU using the NASA-designed Rotating Wall Vessel (RWV) Bioreactor. Finally, part three highlights the research I've conducted in the Nickerson lab, as well as continuing studies within the field of space microbiology.
ContributorsMcCarthy, Breanne E. (Author) / Lynch, John (Thesis director) / Foy, Joseph (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134307-Thumbnail Image.png
Description
Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from

Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from the environment of the CF lung, changing the expression of phenotypes over the course of the infection. As P. aeruginosa infections become chronic, some phenotype changes are known to be linked with negative patient outcomes. An important exoproduct phenotype is rhamnolipid production, which is a glycolipid that P. aeruginosa produces as a surfactant for surface-mediated travel. Over time, the expression of this phenotype decreases in expression in the CF lung.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.
ContributorsKiermayr, Jonathan Patrick (Author) / Bean, Heather (Thesis director) / Misra, Rajeev (Committee member) / Haydel, Shelley (Committee member) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132836-Thumbnail Image.png
Description
Renewable bioproduction through fermentation of microbial species such as E. coli shows much promise in comparison to conventional fossil fuel based chemical production. Although Escherichia coli is a workhorse for bioproduction, there are inherent limitations associated with the use of this organism which negatively affect bioproduction. One example is E.

Renewable bioproduction through fermentation of microbial species such as E. coli shows much promise in comparison to conventional fossil fuel based chemical production. Although Escherichia coli is a workhorse for bioproduction, there are inherent limitations associated with the use of this organism which negatively affect bioproduction. One example is E. coli fermentative growth being less robust compared to some microbes such as Lactobacilli under anaerobic and microaerobic fermentation conditions. Identification and characterization of its fermentative growth constraints will help in making E. coli a better fermentation host. In this thesis, I demonstrate that Lactobacillus plantarum WCFS1 has desirable fermentative capabilities that may be transferrable to E. coli through genetic engineering to alleviate growth restraints. This has led to the hypothesis that these L. plantarum DNA sequences are transferrable through a genomic library. A background of comparative genomics and complementary literature review has demonstrated that E. coli growth may be hindered by stress from many toxin-antitoxin systems. L. plantarum WCFS1 optimizes amino acid catabolism over glycolysis to generate high ATP levels from reducing agents and proton motive force, and Lactobacilli are resistant to acidic environments and encodes a wide variety of acid transporters that could help E. coli fermentative growth. Since a great variety of L. plantarum genes may contribute to its fermentative capabilities, a gDNA library containing L. plantarum WCFS1 genes has been successfully constructed for testing in E. coli bioproducers to search for specific genes that may enhance E. coli fermentative performance and elucidate the molecular basis of Lactobacillus fermentative success.
ContributorsDufault, Matthew Elijah (Co-author, Co-author) / Wang, Xuan (Thesis director) / Nielsen, David (Committee member) / Varman, Arul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133650-Thumbnail Image.png
Description
Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while

Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while simultaneously producing almost 40% of the globally emitted methane (Schmidt et al., 2016), making peatlands an important component of the carbon budgets. Published research indicates that the efficiency of carbon usage among microbial communities can determine the soil-carbon response to rising temperatures (Allison et al. 2010). By determining carbon consumption in peatland soils, total community respiration response, and community structure change with additions, models of carbon use efficiency in permafrost peatlands will be well-informed and have a better understanding of how the peatlands will respond to, and utilize, increased availability of carbon compounds due to the melting permafrost. To do this, we will sequence Lutose deep core samples to observe baseline microbial community structure at different depths and different age-gradients, construct substrate incubations of glucose and propionate and observe community respiration response via a gas chromatography flame ionization detector, track the glucose and propionate additions with high-performance liquid chromatography (HPLC), and sequence the samples once more to determine if there was a deviation from the initial community structure obtained prior to the incubations. We found that our initial sequencing data was supported by previous work (Lin et al., 2014), however we were unable to sequence samples post-incubation due to time constraints. In this sequencing analysis we found that the strongest variable that made samples biologically similar was the age-gradient site in which they were extracted. We found that the group with glucose additions produced the most carbon dioxide compared with the other treatments, but was not the treatment that dominated the production of methane. Finally, in the HPLC samples that were analyzed, we found that glucose is likely forming the most by-product accumulation from mass balance calculations, while propionate is likely forming the least. Future experimentation should focus on the shortcomings of this experiment. Further analysis of 16S rRNA sequencing data from after the incubations should be analyzed to determine the change in microbial community structure throughout the experiment. Furthermore, HPLC analysis for the several samples need to be done and followed up with mass balance to determine where the added glucose and propionate are being allocated within the soil. Once these pieces of the puzzle are put into place, our original question of how the microbial community structure changes at different depths and age-gradients within permafrost peatlands will be conclusively answered.
ContributorsFrese, Alexander Nicholas (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / van Paassen, Leon (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137292-Thumbnail Image.png
Description
Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction

Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction of thelytokous parthenogenesis. This investigation was a characterization of the so-far unexamined Wolbachia infection of Pogonomyrmex ants. Five main questions were addressed: whether Wolbachia infection rates vary between North and South America, whether infection rates are dependent on host range, whether Wolbachia affects the caste determination of P. barbatus, whether infection rates in Pogonomyrmex are similar to those of other ants, and whether Wolbachia phylogeny parallels the phylogeny of its Pogonomyrmex hosts. Using PCR amplification of the wsp, ftsZ, and gatB loci, Wolbachia infections were detected in four of fifteen Pogonomyrmex species (26.7%), providing the first known evidence of Wolbachia infection in this genus. All infected species were from South America, specifically Argentina. Therefore, Wolbachia has no role in the caste determination of the North American species P. barbatus. Additionally, while it appears that the incidence of Wolbachia in Pogonomyrmex may be limited to South America, host range did not correlate with infection status. The incidence of Wolbachia in Pogonomyrmex as a whole was similar to that of invasive Solenopsis and Linepithema species, but not to Wasmannia auropunctata or Anoplolepis gracilipes, which retain Wolbachia infection in non-native locations. This suggests that there may be a parallel in Wolbachia infection spread in certain short-term models of species colonization and long-term models of genus radiation. Finally, there was no congruity between host and parasite phylogeny according to maximum likelihood analyses, necessarily due to horizontal transfer of Wolbachia between hosts and lateral gene transfer between Wolbachia strains within hosts.
ContributorsHarris, Alexandre Marm (Author) / Gadau, Juergen (Thesis director) / Martin, Thomas (Committee member) / Helmkampf, Martin Erik (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2014-05