Matching Items (7)
Filtering by

Clear all filters

156067-Thumbnail Image.png
Description
Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene.

Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene. While genetically modified bacteria have historically been used for producing useful biopharmaceuticals like human insulin, plants can assemble much more complicated proteins, like human antibodies, that bacterial systems cannot. As plants do not harbor human pathogens, they are also safer alternatives than animal cell cultures. Additionally, plants can be grown very cheaply, in massive quantities.

In my research, I have studied the genetic mechanisms that underlie gene expression, in order to improve plant-based biopharmaceutical production. To do this, inspiration was drawn from naturally-occurring gene regulatory mechanisms, especially those from plant viruses, which have evolved mechanisms to co-opt the plant cellular machinery to produce high levels of viral proteins. By testing, modifying, and combining genetic elements from diverse sources, an optimized expression system has been developed that allows very rapid production of vaccine components, monoclonal antibodies, and other biopharmaceuticals. To improve target gene expression while maintaining the health and function of the plants, I identified, studied, and modified 5’ untranslated regions, combined gene terminators, and a nuclear matrix attachment region. The replication mechanisms of a plant geminivirus were also studied, which lead to additional strategies to produce more toxic biopharmaceutical proteins. Finally, the mechanisms employed by a geminivirus to spread between cells were investigated. It was demonstrated that these movement mechanisms can be functionally transplanted into a separate genus of geminivirus, allowing modified virus-based gene expression vectors to be spread between neighboring plant cells. Additionally, my work helps shed light on the basic genetic mechanisms employed by all living organisms to control gene expression.
ContributorsDiamos, Andy (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2017
136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction.

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
ContributorsKendle, Robert Player (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Larrimore, Kathy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133792-Thumbnail Image.png
Description
A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was purified, an ELISA was conducted to validate that the antibody was able to bind to the flavivirus fusion loop.
ContributorsPardhe, Mary (Author) / Mason, Hugh (Thesis director) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / School of Life Sciences (Contributor) / Department of Information Systems (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133844-Thumbnail Image.png
Description
Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high levels of conservation. On its own it is poorly immunogenic and offers little protection against influenza infections, but by combining it with a potent adjuvant, this limitation may be overcome. Recombinant immune complexes, or antigens fused to antibodies that have been engineered to form incredibly immunogenic complexes with one another, were previously shown to be useful, immunogenic platforms for the presentation of various antigens and could provide the boost in immunogenicity that M2e needs to become a powerful universal influenza A vaccine. In this thesis, genetic constructs containing geminiviral replication proteins and coding for a consensus sequence of dimeric M2e fused to antibodies featuring complimentary epitopes and epitope tags were generated and used to transform Agrobacterium tumefaciens. The transformed bacteria was then used to cause Nicotiana benthamiana to transiently express M2e-RICs at very high levels, with enough RICs being gathered to evaluate their potency in future mouse trials. Future directions and areas for further research are discussed.
ContributorsFavre, Brandon Chetan (Author) / Mason, Hugh (Thesis director) / Mor, Tsafrir (Committee member) / Diamos, Andrew (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021
131096-Thumbnail Image.png
Description
HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to be produced. The HIV-1 envelope glycoprotein41 and the Gag structural protein have been identified to be particularly important in HIV-1 transcytosis and cytotoxic lymphocyte response, respectively. Enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of glycoprotein (dgp41) comprising the membrane proximal external region (MPER), transmembrane domain and cytoplasmic tail may present a unique and safe way of presenting these proteins in a state mimicking their natural formation. Another form of presenting the immunogenic glycoprotein41, particularly the MPER component, is by presenting it onto the N-terminal of an IgG molecule, thereby creating an IgG fusion molecule. In our lab, both VLPs and IgG fusion molecules are highly expressed and purified within GnGn Nicotiana benthamiana. The results indicated that these recombinant proteins can be assembled properly within plants and can elicit an immune response in mice. This provides a preliminary step in using such Gag/dpg41 VLPs and RIC as present a safe, effective, and inexpensive HIV vaccine.
ContributorsGarcia, Izamar (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
166031-Thumbnail Image.png
Description

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with peak protein accumulation and minimal necrosis achieved on day 4 post-infiltration. In comparing various purification strategies, it was determined that a 20% ammonium sulfate precipitation is an effective and efficient method for removing plant proteins and purifying the recombinant VLPs of interest. If further purification is required, this may be achieved through ultracentrifugation. VLPs are a useful platform for a variety of biomedical applications and developing the technology to efficiently produce VLPs in the plant expression system is of critical importance.

ContributorsFleming, Claire (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2022-05