Matching Items (3)
Filtering by

Clear all filters

152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
153559-Thumbnail Image.png
Description
ABSTRACT



Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further

ABSTRACT



Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further augmented through a supplementary technique derived from my previous research. This research has provided converging behavioral evidence that dyads engaged in joint action in a familiar task requiring spatial and temporal synchrony end up developing an extended overlap in their body representations, termed a joint body schema (JBS). The present research examined if inducing a JBS between a trainer and a novice trainee, prior to having the dyad engage in imitation practice on a novel motor pattern would enhance both of the training process and its outcomes.

Participants either worked with their trainer on a familiar joint task to develop the JBS (Joint condition) or performed a solo equivalent of the task while being watched by their trainer (Solo condition). Participants In both groups then engaged in blocks of alternating imitation practice and free production of a novel manual motor pattern, while their motor output was recorded. Analyses indicated that the Joint participants outperformed the Solo participants in the ability to synchronize the spatial and temporal components of their imitation movements with the trainer’s pattern-modeling movements. The same group showed superior performance when attempting to freely produce the pattern. These results carry significant theoretical and translational potentials for the fields of motor learning and rehabilitation.
ContributorsSoliman, Tamer (Author) / Glenberg, Arthur (Thesis advisor) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015